# Insights into cosmic magnetic fields from radio relic observations at metre wavelengths

#### Matthias Hoeft

Thüringer Landessternwarte Tautenburg

in collaboration with K. Rajpurohit, M. Kierdorf, R. van Weeren, D. Wittor, R. Beck, F. Vazza et al.

mainly based on Rajpurohit+ 18, Rajpurohit in prep., Kierdorf+ 17



The Toothbrush radio relic

at **L-band** frequency VLA ABCD config

resolution ~ 1.8 arcsec rms noise ~ 6 µJy

manifestation of magnetic fields in ICM

Rajpurohit+ 2018

intracluster medium (ICM)

~ 8 arcmin, 1.8 Mpc

major

merger

(known)

X-ray

shock front

Mach number ~ 1.4

white: optical blue: X-ray red: radio

# The Toothbrush radio relic

at very low frequencies

resolution ~ 5.0 arcsec rms noise ~ 60 µJy

> van Weeren+ 2016

> > white: optical blue: X-ray red: radio

#### Spectral index reveals electron ageing







# Substructure of Toothbrush relic Origin is unknown!

**Possibility A** filaments reveal magnetic field structure similar to a cut through a puffy pastry



puffy pastry something like samosa ...







# Substructure of Toothbrush relic Origin is unknown!

**Possibility A** filaments reveal magnetic field structure similar to a cut through a puffy pastry



puffy pastry something like samosa ...



a relic (very likely) seen edge on



(very likely) a relic is seen face on

Does the filaments in the two clusters have the same origin?



# Substructure of relics: Origin is unknown!

z = 0.00

#### Possibility B complex shock morphology mimics filaments





# Ridge is asymmetric and peak shifts with frequency

downstream profile changes with frequency consistent with *shock injection* + *downstream cooling* scenario





# Narrowness of the ridge

disfavours:  $B\sim 0.8\ldots 5\mu {\rm G}$ 

impossible to match width and downstream slope





Mach number of model

 $\mathcal{M} = 3.1$ 



The Metre Wavelength Sky - II

#### From an idealised model to a more realistic scenario

Part 1: *projection* of the shock front





#### From an idealised model to a more realistic scenario

Part 2: scatter of *magnetic field* strengths



→ motivates *toy model*: lognormal distribution

$$h(B; B_0, \sigma) dB = \frac{1}{\sqrt{2\pi\sigma}B} \exp\left\{-\frac{\ln(B/B_0)}{2\sigma^2}\right\} dB$$



The Metre Wavelength Sky - II

### Low magnetic field with scatter preferred



best match for  $M \sim 3.75$ 



# **ICM depolarises emission**

Kierdorf+ 2017

*RM fluctuations* cause depolarisation a relation between fractional polarisation *p* and RM

 $\frac{p_2}{p_1} = \exp\{-2\sigma_{\rm RM}^2(\lambda_2^4 - \lambda_1^4)\}$ 

Turbulent depolarisation

 $\sigma_{\rm RM} \sim n_{\rm e} B_{\rm turb} \, (Ll)^{0.5}$ 

*L*: length l.o.s. through medium *l*: correlation length

[Sokoloff+ 1998]

e.g. for 'brush'-region (B1) consistent with typical ICM values

 $10^{-3} \,\mathrm{cm}^{-3}, \ 1\,\mu\mathrm{G}, \ 1.5 \,\mathrm{Mpc}, \ 10\,\mathrm{kpc}$ 



# **Polarised intensity in L-band**



Rajpurohit+ in prep.

# What is the intrinsic polarisation of radio emission?

#### Wittor+ subm

Shock normal

quite perpendicular to shock

*Magnetic field* large scatter







The Metre Wavelength Sky - II

# Selecting regions for QU fitting 'tip of handle'-region only







# QU fitting in small box regions



# Polarisation (B-vector) well aligned with shock







The Metre Wavelength Sky - II

**RM ~ 30 rad / m<sup>2</sup>** junction

### **RM ~ 10 rad / m<sup>2</sup>**



# Summary

- high resolution reveals
  filamentary structure of emission
- the ridge profile suggests:
  - high B (>5 $\mu G$  ) is unlikely
  - in the emission region the strength of B scatters significantly
- large scale depolarisation gradient indicates handle region is behind ICM
- Small box QU-fitting:
  - Polarisation (B-vec) well aligned with shock
  - shock structures are at different Rotation Measure depths









