LOFAR2.0

A premier low-frequency array for the 2020s

Compared to SKA-Low Phase 1

LOFAR + DUPLLO

Reaches 2x lower frequency

>10x higher resolution

SKA-Low Phase 1

Reaches to 2x higher frequencies

>10x higher collecting area

What is LOFAR2.0?

- LOFAR2.0 is a staged programme of upgrades to keep LOFAR cutting edge well into the 2020s.
- Stage 1 of the LOFAR2.0 programme includes the DUPLLO and COBALT2.0 upgrades.
- Further community consultation to define possible future stages.

DUPLLO

Digital Upgrade for Premier LOFAR Low-band Observing

LOFAR + DUPLLO

- Order-of-magnitude increase in sensitivity in the 10-90MHz band by maximising the use of existing infrastructure.
- Deliver a major and broad science harvest through a deep all-sky survey and other observations.
- H2020 LOFAR for Space Weather design project. DUPLLO sets the stage for turning LOFAR into a 24/7 space weather monitor.

LOFAR Stations

Robust, full-sensitivity imaging

High-Band Antennas

Frequency = 110-240 MHz Wavelength = 1-3 metres

Sensitivity and accuracy limited by ionosphere

Low-Band Antennas Frequency = 10-90 MHz Wavelength = 3-30 metres

LOFAR Stations

Robust, full-sensitivity imaging

Low-Band Antennas Frequency = 10-90 MHz Wavelength = 3-30 metres

The Moon (for comparison)

All-sky map that is unique for the next 20 years.

Provides a monumental legacy data set for the astronomical community.

Parameter space

Shimwell

DUPLLO delivers a monumental survey of the sky

DUPLLO pilot survey data

DUPLLO makes this 5x more sensitive *and* more accurate

> Only LOFAR provides the necessary angular resolution

de Gasperin

When do the first stars start to shine?

Brienza on Friday

See talk by Joe Lazio

on Monday

DUPLLO Science Goals

 How do supermassive black holes and galaxy clusters shape the Universe? See talk by Marisa

 What is the habitability around low-mass stars and can we directly detect exoplanets? Cosmic magnetism Supermassive black holes

-Early Universe

Galaxy clusters

Solar System Planets

Meteors

Sun

33

Cosmic rays

Pulsars

Gravitational wave events

Nearby galaxies

lonosphere

Lightning

Supernovae

Space weather

Interstellar medium

Beyond astronomy

Data products with broader societal relevance and applications

Lightning

lonosphere

Space weather

Protect satellites & power grids

Lightning protection Systems

High-precision GPS

Scientifically limited

High-Band

Breakthrough techniques

Rich in science

No ionospheric correction

lonosphere well modeled

Scientifically limited

High-Band

No ionospheric correction

Low-Band

Rich in science

lonosphere well modeled

Breakthrough _

techniques

Scientifically limited

High-Band

No ionospheric correction

Low-Band

2x

Rich in science

lonosphere well modeled

Breakthrough _

techniques

Scientifically limited

No ionospheric correction

High-Band

Breakthrough techniques

Rich in science

lonosphere well modeled

Low-Band

Before DUPLLO

With DUPLLO

With DUPLLO

Proof of concept

Shown that low-band and high-band ionosphere track each other

Shown that we can derive an ionospheric phase screen from high-band data

DUPLLO Innovation

Scientifically limited

Rich in science

The stage is set...

Timeline

COBALT2.0

• Order of magnitude increase in online computing.

Thanks Pandey!

• Enables massively parallel observing modes.

LOFAR Tied-Array All-Sky Survey (LOTAAS)

J0039+35 53.04 pc/cc 0.5367 s	J0059+69 63.53 pc/cc 1.1459 s	J0100+80 55.76 pc/cc 1.4936 s	J0107+13 22.02 pc/cc 1.1974 s	J0115+63 65.04 pc/cc 0.5215 s	J0121+14 17.77 pc/cc 1.3890 s
mmmmm	Why your way	Mr Karman	MM MMMMMMM	why manufacture	my hour hours
J0139+33 21.21 pc/cc 1.2479 s	J0210+58 76.70 pc/cc 1.7663 s	J0250+58 45.8 pc/cc 23.5355 s	J0302+22 19.09 pc/cc 1.2072 s	J0305+11 27.97 pc/cc 0.8621 s	J0317+13 12.90 pc/cc 1.9743 s
manuman	And Manufacture	mun man man	Mr. Myn My winner	my moundar	Mr. humanny
J0349+23 63.15 pc/cc 2.4208 s	J0421+32 77.0 pc/cc 0.9001 s	J0454+45 20.82 pc/cc 1.3892 s	J0518+51 39.15 pc/cc 0.9125 s	J0742+43 36.23 pc/cc 0.6062 s	J0811+37 16.95 pc/cc 1.2483 s
walter and warman	my many	mulmin	MM Mr May May	why pulling man	Man proposition
J0813+22 52.29 pc/cc 0.5314 s	J0827+53 23.103 pc/cc 0.0135 s	J0857+33 24.025 pc/cc 0.2430 s	J0928+30 21.95 pc/cc 2.0915 s	J0935+33 18.35 pc/cc 0.9615 s	J1017+30 27.16 pc/cc ∧ 0.4528 s
yn Myrmyllulin	~~~~~	MW Manner Marken	malumman	men promonent	why phonemana
J1226+00 18.50 pc/cc 2.2851 s	J1235-02 18.8 pc/cc 3.5976 s	J1303+38 19.000 pc/cc 0.3963 s	J1334+10 24.00 pc/cc 0.9111 s	J1344+66 30.02 pc/cc 1.3941 s	J1404+11 18.48 pc/cc 2.6505 s
magnoment	www.monowywww	montherman	MWY Mary Mary	why Allow Allow	multiment
J1426+52 25.37 pc/cc 0.9958 s	J1529+40 6.61 pc/cc 0.4764 s	J1623+58 26.40 pc/cc 0.6518 s	J1635+23 37.60 pc/cc 1.2087 s	J1638+40 33.35 pc/cc 0.7677 s	J1643+13 35.97 pc/cc 1.0991 s
And prover the work	Myr Wyrwhryw	my propringer	my many mark	wingprobability	when how Monthly
J1655+62 35.41 pc/cc 0.7762 s	J1657+33 24.04 pc/cc 1.5702 s	J1658+36 3.050 pc/cc 0.0330 s	J1707+35 19.240 pc/cc 0.1598 s	J1713+78 36.96 pc/cc 0.4325 s	J1715+46 19.82 pc/cc 0.5481 s
when providente	multimenter	mom	munum	mpro wannumphan	who have whether
J1722+35 23.83 pc/cc 0.8216 s	J1735+63 41.81 pc/cc 0.5107 s	J1740+27 35.46 pc/cc 1.0582 s	J1741+38 47.26 pc/cc 0.8289 s	J1745+12 66.32 pc/cc 1.0599 s	J1745+42 38.00 pc/cc 0.3051 s
mul provinger and	Ann Mannen	Mr. M.	And Marker Marken	My Mrowmy	MM VyMymmmym
J1749+59 45.09 pc/cc 0.4360 s	J1809+17 47.32 pc/cc 2.0667 s	J1810+07 79.41 pc/cc 0.3077 s	J1814+22 62.313 pc/cc 0.2537 s	J1848+15 77.42 pc/cc 2.2338 s	J1849+25 74.970 pc/cc 0.5193 s
HW WARNAM	when when when	MW & MM MMMMMMMMM	-way por manufu	www. Maraman	mm manument
J1910+56 20.75 pc/cc 0.3419 s	J1916+32 83.99 pc/cc 1.1374 s	J1933+53 33.52 pc/cc 2.0526 s	J1953+30 43.61 pc/cc 1.2712 s	J1957-00 38.31 pc/cc 0.9651 s	J1958+56 58.10 pc/cc 0.3118 s
M. Amphram	man parti man	WW WWW WWW	many personance	may my my man	MM MUNHMMMM
J2006+22 130.56 pc/cc 1.7419 s	J2022+21 73.52 pc/cc 0.8035 s	J2036+66 50.82 pc/cc 0.5019 s	J2051+12 43.40 pc/cc 0.5532 s	J2053+17 26.980 pc/cc 0.1193 s	J2057+21 73.31 pc/cc 1.1667 s
man management	why promograph	how phylinmagnite	man monologica	monthyman	may promising whe
J2122+24 8.49 pc/cc 0.5414 s	J2123+36 108.7 pc/cc 1.2940 s	J2209+22 46.30 pc/cc 1.7769 s	J2306+31 46.13 pc/cc 0.3416 s	J2329+47 43.99 pc/cc 0.7284 s	J2336-01 19.60 pc/cc 1.0298 s
men margundallet	NW WWWWWW	Marthone	my month	mannin	my mymmum
J2350+31 39.14 pc/cc 0.5081 s	0 0.5 1	0 0.5 1	0 0.5 1	0 0.5 1	0 0.5 1
muy promonent					
ע 0.5 1					

Sanidas et al., almost submitted

Pulse phase

ά

LOFAR super-slow (23.5-sec) pulsar discovery

LoTSS `on' and `off' images

LOFAR millisecond pulsar discoveries

Bassa, Pleunis & Hessels 2017 Bassa et al. 2017 Pleunis et al. 2017

LOFAR is expanding the pulsar parameter space

DUPLLO+LOFAR will deliver the deepest and highestresolution 10-90MHz all-sky survey ever performed