MASS MODELS OF GAS-RICH VOID DWARF GALAXIES

Sushma Kurapati

NCRA-TIFR
with J. N. Chengalur, S. Pustilnik, and P. Kamphuis
The Metrewavelength Sky - II
March 18-22, 2018

Plan of the talk

- Introduction: Cusp-core problem
- Alternative dark matter (DM) models
- Baryonic feedback
- Systematics in rotation curves
- Tilted ring modelling: Rotation curves
- 2D velocity fields
- 3D data cubes
- Results
- Implications and Future work

Introduction

- Λ Cold Dark Matter ($\Lambda \mathrm{CDM}$) cosmology
- successful on large scales (larger than $\sim 10-100 \mathrm{kpc}$).
- crisis on small scales: e.g. Cusp-core problem
- Cusp-core problem: Dwarfs prefer a shallow DM density core instead of a cusp

$$
\text { slope }=0
$$

$\log r$

Cusp-core problem

- CDM simulations predict that central density of DM follows a power law $\rho \sim r^{\alpha}$
- with slope $-0.8<\alpha<-1.5 \quad$ (e.g. Di Cintio et al. 2014)
- for NFW halo: $\alpha=-1$ (Navarro et al. 1996)
- However, observations give $\alpha \sim-0.2$, which is consistent with Isothermal (ISO) halo ($\alpha \sim 0$).

Cusp-core problem

- Lead to various solutions
- DM models could be more complex than current models.
(e.g. Schneider et al. 2017)
- Including baryonic feedback processes have generated cores in some simulations.
(e.g.Pontzen \& Governato 2012)
- Systematics in rotation curves.
(e.g.Oman et al. 2017; Pineda et al. 2017)

Systematic effects

- Residual systematics in modelling Rotation Curves (RCs)
- Smoothing of RC because of the finite resolution.
- Incorrectly measured inclination angles. (e.g. Read et al. 2016b)
- Improperly modelled pressure support. (e.g. Pineda et al. 2017)
- Unmodelled non-circular motions.
(e.g. Oman et al. 2017)
- To investigate systematic effects, we use the rotation curves derived from both 3-D and 2-D approaches for mass models.

Sample

- Gas-rich dwarf galaxies were selected from Lynx-Cancer void
(Pustilnik et al. 2011)
- To get good rotation curves, galaxies with
- well behaved velocity fields
- at least 6 beams across the major axis
- inclinations greater than 35^{0} were selected.
- This gives a sample of 8 galaxies.

Rotation curves

- Tilted ring model was fit to
- HI data cube using Fully Automated Tirrific (FAT; Kamphuis et al. 2015)
- Velocity field using 'Rotcur' in Gipsy

(Rogstad et al. 1974)

Rotation curves

- Tilted ring model was fit to
- HI data cube using Fully Automated Tirrific (FAT; Kamphuis et al. 2015)
- Velocity field using 'Rotcur' in Gipsy Kurapati et al. 2018a

(Rogstad et al. 1974)

Mass modeling: 3D approach

Kurapati et al. 2019, submitted

DM profile is consistent with NFW halo in central regions.

DM inner slope - resolution

Density from 3-D approach

Density from 2-D approach

Kurapati et al. 2019, submitted
$3 D$ approach: average $\alpha(-1.39 \pm 0.19)$ is steeper than literature. 2D approach: average α (-0.49土0.24) matches with literature.

DM density profiles

Density from 3-D approach

Density from 2-D approach

Kurapati et al. 2019, submitted
DM profile from 3-D approach matches with NFW halo.
DM profile from 2-D approach matches with ISO halo.

Systematics: 2-D approach

Kurapati et al. 2019, submitted

$R C$ derived with FAT 3D model matches closely with the data.

Summary

- Rotation curves of 8 dwarfs were derived using 2-D \& 3-D tilted ring fitting routines.
- Average slope $(\alpha=-1.39 \pm 0.19)$ obtained from 3-D fitting is consistent with NFW profile
- Average slope $(\alpha=-0.49 \pm 0.24)$ obtained from $2-\mathrm{D}$ fitting is closer to isothermal profile.
- Fundamental differences in 3-D and 2-D routines may affect slope of central DM density profiles.

Additional slides

Dark matter density profiles

- Isothermal (ISO) halo:
- constant density cores, $\alpha=0$ in central regions.
$-\rho(r)=\rho_{0} /\left[1+\left(r / r_{c}\right)^{2}\right]$,
- ρ_{0} is central density, r_{c} is core radius are free parameters.
- NFW halo:
(Navarro et al. 1997)
- cusped density cores, $\alpha=-1$ in central regions.
- $\rho_{\text {NFW }}(r)=\rho_{i} /\left[\left(r / r_{s}\right)\left(1+r / r_{s}\right)^{2}\right], r_{s}$ is characteristic radius, ρ_{i} is related to density of universe at the time of collapse.
- r_{200} is radius at which density is 200 times critical density,
concentration parameter $\mathrm{c}=\mathrm{r}_{200} / \mathrm{r}_{\mathrm{s}}$ are free parameters.

DM halo parameters - environment

