

Heavily Obscured and Luminous Quasars with Young Radio jets at z ~ 2

Pallavi Patil Reber Pre-Doctoral Fellow University of Virginia, NRAO

Kristina Nyland (NRL), Mark Whittle (UVa), Carol Lonsdale (NRAO), Mark Lacy (NRAO)

MWSKY II, March 22 2019

Active Galactic Nuclei (AGN)

- An actively accreting
 Supermassive black-hole
 (SMBH) is called AGN
- AGN are stronger emitters than nuclei of normal galaxies
- Very luminous objects,
 observable up-to high redshifts

Active Galactic Nuclei (AGN)

- Unique signatures across entire EM spectrum
- The view of accretion disk is obstructed in obscured AGN
- A significant AGN population is obscured
- Characterizing the complete census of AGN is essential to our understanding of the evolution of galaxies and growth of SMBHs

The Obscured Phase in AGN

Obscuration can occur on different spatial scales:

Type-2 AGN

Pallavi Patil

Major-mergers

The Obscured Phase in AGN

Obscuration can occur on different spatial scales:

Type-2 AGN

- More likely seen in luminous galaxies

Pallavi Patil

Major-mergers

Rapid SMBH and galaxy growth in a post-merger coalescence

Catching Luminous Quasars Young

Hopkins et al. 2008

Pallavi Patil

- Gas-rich major-mergers trigger star formation and AGN/Quasar
- SMBH is growing rapidly in the Blowout phase.
- Enshrouded by dust: Optically Faint, Heavily reddened, and MIR Bright
- More numerous at z ~ 2

Ideal systems to study AGN feedback and SMBH-galaxy co-evolution

Searching for Hidden AGN

Wide-Field Infrared Survey Explorer (WISE)

NRAO VLA Sky Survey (NVSS)

4 bands 3.6, 4.5, 12, 22 μm L band- 21 cm

Pallavi Patil

- Cross-match between very red WISE sources with bright, compact NVSS sources
- Study the earliest stages in the life-cycles of luminous AGN

Searching for Hidden AGN Using mid-IR

Lonsdale et al. 2015

Pallavi Patil

Our Multi-Wavelength Campaign

Pallavi Patil

starburst (SFR ~ $100 - 10000 M_{\odot} yr^{-1}$)

Pallavi Patil

Results From IR SEDs

Lonsdale et al. 2015

SEDs suggest presence of a Luminous AGN ($L_{Bol} \sim 10^{12-14} L_{\odot}$) and possibly a

High-Resolution JVLA Imaging

- X-band (8-12 GHz) multiconfiguration snapshot survey (A & B) with 0.2" and 0.6" resolution
- Goal: to characterize morphologies and radio SEDs of our sample sources

28% of our sample have resolved 10 GHz morphologies with linear extents of ~ 4 - 50 kpc

Majority of our sample is still unresolved with linear extents < 2 kpc

Patil et al. in Prep

Radio Luminosity vs Linear Size Relation

Derived from An & Baan 2012

Pallavi Patil

Radio SED Analysis

Radio SED are crucial to study properties of jets and their impact on the environment

Other Surveys Used: GLEAM, WENSS, GB6, TEXAS, SUMSS, VLSSr

VLITE Data Courtesy: Tracy Clarke and Simona Giacintucci

Pallavi Patil

Radio SED Reveals Young AGN

- 58% of the sample sources have curved radio SED with turnover frequencies from 150 MHz to 10 GHz
- A few meet the criteria for various young radio source classes (e.g. CSS, GPS and HFP)

Radio SED Reveals Young AGN

Need sensitive low frequency observations with finer spectral resolution to better constrain the turnover.

Follow-Up Programs

VLBA

- • $\theta_{FWHM} \approx 5 0.85$ mas
- •Linear scales: 50 pc -500 pc

- • $\theta_{FWHM} \approx 150 40$ mas • Linear scales: 350 pc -

1 kpc

Pallavi Patil

 Cycle-6: Spectral line (CO) imaging to constrain host galaxy ISM conditions and investigate feedback

Austin

Next-Generation Very Large Array

ngVLA capabilities

- 244 18-m dishes
- Frequency: 1-115 GHz
- $\theta_{FWHM} \approx 2 80 \, mas$
 - Linear scales: 10-700

pc for $z \sim 1-6$

Next-Generation Very Large Array

ngVLA capabilities

- 244 18-m dishes
- Frequency: 1-115 GHz
- $\theta_{FWHM} \approx 2 80 \, mas$
- Linear scales: 10-700

pc for $z \sim 1-6$

Young AGN in the ngVLA Era

Nyland, Patil et al. 2018

Pallavi Patil

 ngVLA is wellmatched for mapping inner kpc scales at *z* ~

 ngVLA + ngLOBO can robustly characterize spectral turnover

ngVLA Science Book, p595-602

- Our Goal: Study the earliest stages in the life-cycles of • **luminous AGN**
- - kpc-scale) radio morphologies
- Preliminary radio SED analyses suggest that the radio
 - jets in many of our sources are young
- Follow-up with the JVLA, VLBA/e-MERLIN, and ALMA to •

Pallavi Patil

Summary

- High-resolution JVLA imaging of our sample of hyper
 - luminous, obscured quasars has revealed compact (sub-

study jet properties and feedback is in progress!

University of Virginia

Thank you

Pallavi Patil

pp3uq@virginia.edu

Additional Slides

AGN Play Key Role in Galaxy Mass Building

Characterizing the onset of AGN activity is essential to our

Pallavi Patil

Gültekin et al. (2009)

- understanding of the evolution of galaxies and growth of SMBHs

300

400

(리) 시골에 시골에 의

Radio SED Fitting: Interactive Tool

Luminosity vs Linear Size

Luminosity Distribution

Radio luminosities intermediate between FRI and FRII

Radio Luminosity Functions

The space density of our sample sources is very low → Transient evolutionary phase?

Radio SEDs of the WISE-NVSS Sample

• Synchrotron emission from

relativistic electrons in the jets

- SED Modeling: Properties of jets and their impact on the environment
- An interactive SED fitting tool using least square minimization

Spectral Index Between 1.4 GHz and 10 GHz

ngVLA Is Well-Matched for Mapping Inner Kpc Scales at *z* ~ 1-6

Nyland, Patil et al. 2018

ngVLA capabilities

Frequency: I-II5

 $\theta_{FWHM} \approx 2 - 80 \, mas$ Linear scales: 10-700 AGN science with ngVLA

- Spectral ages
- Jet-driven feedback
- Characterizing spectralturnover (ngVLA+ngLOBO)
- Probing Cold gas via low | CO lines and HI

observations

ALMA Cycle-6 Preliminary Result

Dust Continuum and CO line Mapping

Pallavi Patil

