

High Sensitivity Imaging with MeerKAT and uGMRT: Exploring the Deep GHz Universe

MWsky 2, Pune, 19 March 2019

MeerKAT and MIGHTEE Complementarity of uGMRT and MeerKAT superMIGHTEE and the deep GHz Sky

MWsky 2, Pune, 19 March 2019

SKA-mid 0: MeerKAT completed at the SA SKA Site

13 July 2018

On Friday, 13 July 2018, the Deputy President of the Republic of South Africa, His Excellency Mr David Mabuza, unveiled this plaque to mark the completion of the MeerKAT, 64-antenna radio telescope

SKA-mid O: MeerKAT completed at the SA SKA Site

MeerKAT Configuration

MeerKAT Receivers

- 0.58-1.015 GHz (UHF-band)
- 0.9 1.67 GHz (L-band)
- 1.75 3.75 GHz (S-band)

MeerKAT L-band performance

Extremely good L-band performance

@ A/T=400, SEFD for a single antenna = 441 Jy

IDÍA

 $SEFD = \frac{2kT_{sys}}{\eta_a \frac{\pi}{4}D^2}$

MeerKAT Array: A powerful imaging telescope

VLA 'E'+D+C+B configuration all at once, with 4 times the FoV.

IDİA

MeerKAT Large Survey Projects

- LADUMA (Deep atomic hydrogen)
- MIGHTEE (Deep imaging for galaxy evolution)
- Fornax (Deep HI Survey of the Fornax cluster)
- MHONGOOSE (targeted nearby galaxies HI)
- MeerKAT Absorption Line Survey (extragalactic HI absorption)
- ThunderKAT (exotic phenomena, variables and transients)
- TRAPUM (pulsar search)

Imaging domain

Fime domain

• MeerTime (pulsar timing)

http://public.ska.ac.za/meerkat/meerkat-large-survey-projects

MIGHTEE: Observing Plan (4-5 years)

Principal Investigators: Matt Jarvis (Oxford), Russ Taylor (IDIA)

MIGHTEE: Observing Plan (4-5 years)

1960	5000 hours				
 MIGHTEE MID L-band: 2 μJy rms XMSS – 6.7 deg² CDFS – 8.3 deg² ELAIS S1 – 1.6 deg² COSMOS – 1 deg² 	 MIGHTEE MID S-band: 1 μJy rms CDFS - 4 deg² COSMOS - 1 deg² 	MIGHTEE DEEP L-band: 0.1 μJy rms UHF: 0.1 μJy rms • CDFS – 1 deg ² LADUMA COMMENSAL			

Data products

- Broad band multi-frequency synthesis images
- 4D spectro-polarimetric data cubes (1k channels)
- 3D HI spectral cubes (32 k channels)

uGMRT–MeerKAT Angular Resolution Complementarity

$$\theta_{1.8\,\mathrm{GHz}} = 5^{\prime\prime}$$

$$\theta_{0.6\,\mathrm{GHz}} = 5^{\prime\prime}$$

IDIA

uGMRT-MeerKAT Sensitivity Complementarity

uGMRT-MeerKAT Frequency Complementarity

SuperMIGHTEE

An uGMRT-MIGHTEE ultra-broad band Deep full Stokes Survey

- 0.25 1.7 GHz (14 deg²), 0.25 2.7 GHz (6 deg²)
- rms 2 µJy per band
- 5" resolution

SKA Pathfinder Continuum Surveys

SKA Pathfinder Continuum Surveys

IDÍA

Radio Source Populations

Total intensity source populations counts: SKADS Simulation (Wilman et al. 2008)

Radio Source Populations – superMIGHTEE

Total intensity source populations counts: SKADS Simulation (Wilman et al. 2008)

Radio Source Populations – superMIGHTEE Pol IDIA

Total intensity source populations counts: SKADS Simulation (Wilman et al. 2008)

GMRT

MIGHTEE Early Observations (L-band)

CYBERSKA A Cyberinfrastructure plat	form to meet the needs of d	ata intensive radio astronomy on route to the SKA		
Home Profile Settings myDashl	oard myGroups 🗹 Tools Help	About	Admin Search	Go Log out
* 🔊	Pages > MIGHTEE > MIGHTEE MeerKAT Obser	vation Summary		Create a sub-pag
MIGHTEE MeerKAT International GigaHertz Tiered Extragalactic Exploration	MIGHTEE MeerKAT Observat	tion Summary		Group: MIGHTEE Edit 🔀

This page contains a summary listing of MIGHTEE MeerKAT observations. The pointing coordinate for all of MIGHTEE target fields are listed here.

survey Closed grou Subgroups:

MIGHTEE-GMRT MIGHTEE-Continuum **MIGHTEE-Noise** MIGHTEE-HI-absorption MIGHTEE-HI-emission MIGHTEE-XID MIGHTEE-POL MIGHTEE-Data **MIGHTEE Managen** Group Application Group activity Group blog Group bookmarks Group calendar Group discussion Group file folders Group files Group pages

Group tasks

Related groups

Edit group settings Edit widget layout Invite to group

Ian Heywood 28 days ago

Here is a spreadsheet with details of the most recent observations in.

Edit comment

Summary of MIGHTEE MeerKAT observations

	DATE	ID	POINTING	TARGET	PRIMARY	SECONDARY	POL	T_int [s]	N_chan	Track [h]	N_ant	
	2018-04-11	1523464709	COSMOS	COSMOS	J0408-6545	3C237	J1331+3030	8	4096	6.74	54	
	2018-04-12	1523518570	CDFS_16	CDFS16	J1939-6342	J0240-2309	J0521+1638	4	4096	4.26	55	
	2018-04-12	1523541036	CDFS_16	CDFS16	J1939-6342	J0240-2309	J0521+1638	4	4096	4.33	55	
	2018-04-19	1524147354	COSMOS	COSMOS	J0408-6545	3C237	J1331+3030	4	4096	8.65	64	
	2018-05-06	1525613583	COSMOS	COSMOS	J0408-6545	3C237	J1331+3030	4	4096	8.39	62	
	2018-10-06	1538856059	XMMLSS_12	J0217-0449	J1939-6342	J0201-1132	J0521+1638	8	4096	8.02	59	
L	2018-10-07	1538942495	XMMLSS_13	J0220-0449	J1939-6342	J0201-1132	J0521+1638	8	4096	8.07	59	
	2018-10-08	1539028868	XMMLSS_14	J0223-0449	J1939-6342	J0201-1132	J0521+1638	8	4096	8.03	60	
l	2018-10-09	1539109858	ELAIS-S1_4	J0037-4359	J1939-6342	J0224-4202	J0521+1638	8	4096	8.02	62	
	2018-10-11	1539286252	XMMLSS_12	J0217-0449	J1939-6342	J0201-1132	J0521+1638	8	4096	8.05	63	
	2018-10-12	1539372679	XMMLSS_13	J0220-0449	J1939-6342	J0201-1132	J0521+1638	8	4096	8.03	62	
	2018-10-13	1539460932	XMMLSS_14	J0223-0449	J1939-6342	J0201-1132	J0521+1638	8	4096	8	62	
	2018-10-14	1539540056	ELAIS-S1_4	J0037-4359	J1939-6342	J0224-4202	J0521+1638	8	4096	8.03	62	

Comments

mightee, observations

×

CDFS - IDIA CASA pipeline - up to Direction Independent self-calibration 55 antennas, 8 hours Compliments: Krishna Sekhar

Intensity (µJy-beam⁻¹)

MIGHTEE COSMOS: up to direction independent self-cal. 54 -64 antennas, 19 hours on source RMS = 5.1 microJy Stokes I

Complements: Ian Heywood

MIGHTEE COSMOS: includes direction dependent self-cal 54 -64 antennas, 19 hours on source RMS = 2.8 microJy Stokes I

Complements: Ian Heywood

Direction Dependent Mueller Matrix

Direction Dependent Self-Cal solves for this component only

Collaboration with NRAO on full-Stokes AW projection in CASA (JVLA, ALMA, MeerKAT, uGMRT)

 $\vec{I}^{M} = \sum_{k} \begin{pmatrix} M_{II}^{k} I + M_{IQ}^{k} Q + M_{IU}^{k} U + M_{IV}^{k} V \\ M_{QI}^{k} I + M_{QQ}^{k} Q + M_{QU}^{k} U + M_{QV}^{k} V \\ M_{UI}^{k} I + M_{UQ}^{k} Q + M_{UU}^{k} U + M_{UV}^{k} V \\ M_{VI}^{k} I + M_{VQ}^{k} Q + M_{VU}^{k} U + M_{VV}^{k} V \end{pmatrix}$

VLA L-band

Image compliments: Preshanth Jagannathan (NRAO)

Direction Dependent Mueller Matrix

Collaboration with NRAO on full-Stokes AW projection in CASA (JVLA, ALMA, MeerKAT, uGMRT)

l -> U

MeerKAT L-band

Image compliments: Srikrishna Sekhar (IDIA)

| -> Q

I -> V

IDIA

superMIGTHEE: Evolutionary spectra for ~100,000 microJy radio sources

See poster by Zara Radriamanakoto for an example.

Polarimetry: Bandwidth is key

Polarimetry of PKS B1610-771 (O'Sullivan et al. 2012)

Slide modified from Bryan Gaensler

Detecting the Magnetic Cosmic Web

Detecting the Magnetic Cosmic Web

Requires:

- RM precision of ~1 rad m-2
- Density of several 100 sources per square degree

FWHM of RM Transfer Function

FWHM of RM Transfer Function

First SuperMIGHTEE Observing Proposal

Summary: SuperMIGHTEE

- Combined data sensitivity to <1 μ Jy (0.25-2.7 GHz)
- Well matched resolution (a few arcseconds) from 0.25-2.7 GHz
- Spectral analysis from 0.25 (1.7-2.7) GHz for very large sample of μ Jy radio sources
- Ultra-broad band polarimetry to measure Faraday complexity
 - 3.2 times the Faraday synthesis precision over MIGHTEE alone
 - Samples important frequency range for complex de/repolarization
- HI science to high redshift and higher resolution for stacking

