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What | plan to cover

Introduction
Brief Science overview

The Experiment to Detect the Global EoR Signature (EDGES) result
Instrument description

Antenna beam — frequency dependence

receiver and digitizer — use of out of band noise to improve linearity
Calibration

Method of obtaining higher accuracy VNA measurements

3-postion switching to obtain gain and offset and remove receiver bandpass

Measurement of LNA “noise waves”
Data processing

Data averaging and removal of RFI

Removing the foreground and effects of ionospheric absorption and emission

EDGES-3 and plans to deploy in Oregon in June
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EDGES result: Global absorption in sky-averaged spectrum at

Center Frequency 78+/-1 MHz red-shiftZ= 17
Width 19+/- 3 MHz
Consistent with standard models but with Unexpected
Amplitude 0.5-0.2+0.5 MHz
which is a factor of 2 larger than largest predictions

Possible explanations:

1] Hydrogen gas is much colder than expected — due to effects of Dark
matter

or

2] CMB at redshift 17 has added radio background



lllustration of the increased depth of absorption with earlier decoupling of kinetic
temperature from CMB and flattening if Tspin “bottoms out” on the kinetic temperature
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This is only an illustration as | have “tweaked” the times of decoupling and the coupling strength as well
as the time of the start of heating i.e. it is not based on specific Lyman Alpha and collision rates etc.
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EDGES-2 installation at the MRO
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Low Band Antenna on large 30x30m ground plane

A )
Figure 1. Proposed low band ground plane. EDGES beam -3 and -10 dB at 75 MHz
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The need for “out of band noise” to improve the linearity and dynamic range of the ADC



Technical Innovations

Improved VNA calibration

Uses VNA plus asymetric 2-port network to make measurements of

1] Short, Open, Load

2] SOL on asymmetric passive 2-port

3] SOL on asymmetric passive 2-port reversed

4] DC resistance of Load

9-complex measurements + 1 real measurement to solve for
3 complex unknowns of SOL

3 complex unknowns of 2-port S11,522,512=S21

3 complex unknowns of VNA calibration

“One-Port Direct/Reverse method for Characterizing VNA Calibration

Standards” Monsalve et al. (2016) IEEE Transactions on Microwave
Theory and Techniques 64(8): 2631-2639

Automated S11 measurement of antenna

0.01 dB error in antenna S11 of -10 dB results in ~0.5 K out of 2000 K
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Antenna to Low Noise Amplifier mismatch LNA noise waves reflected back from antenna 3 _ position input switching — antenna, load, cal to

ref. plane (Ta) 2(1- ToJ2) 2|F take out “bandpass” and set temperature scale
! _—
LNA = ANTENNA antenna correlated noise e Pant = gTrec
i uncorrelated noise Pioas = 9(GTamp + To)
|_|_hil"'— Fa T Pcaf = Q(G(Tanw + Tca!) + TO)
i 0 . . . .
Compensating for the antenna mismatch LNA noise waves: 2 stage noise where g is tl;e receiver gain and G is
Ty (1 = [D2) = Tut (1 — [Tal?)| F2 _ (2 2 2 G=1-I0
. . . Tree = Taey(1 — |FaH)IF + Tulla*| F Tamb is the ambient temperature and 7,
where I' is the reflection from the LNA + (Tecos(@) + Tesin(@))|Lal||F| + To o . o
and calibration noise
r— Za=% T, is the uncorrelated wave The calibrated receiver output, 15, is
- Z,.+Z;
\12\1/2 T . Tcal(Pam - Hmd) T
F= % T.cos(¢) and Tssin(¢) are the correlated ¥ = T (Pt — Poad) amb
’ ortions which depend on the phase, ¢, of . " -
where I'; and I'; are the reflections at 50 Ehe reflected Wavep P ¢, = Tgy(l = |To®)|FI*G™
ohms ref. point ' ’ + TuTa?|FPG"
I, = 220 ¢ is the phase of T',F + (Tecos(9) + Tisin(@))|Tul |[FIG™
— £1=50
T = Z+50 T} is the "second stage noise”.

Calibration requires measurements of antenna and LNA reflection
coefficients as well correlated and uncorrelated LNA noise



Correction for losses
T=Ty,L+ T, p(1-L)
L=(1-|Ta|?)*|S21|%(1-|T"|?)/|1-S22I"|?
where:

['a = reflection coefficient on antenna measured from reference
plane at LNA input

[ = antenna reflection = (I'a-S11)/(S12521-S11S22+S221"a)

S$11,522,512,521 = antenna balun scattering coefficients



Calibration and processing procedure

In the Lab:
e Measure S11 of LNA, hot and ambient loads, and open/shorted cable

. I\/Ig?sure 3-position switched spectra of hot and ambient loads and open/shorted
cable

e Use the data above to calibrate internal noise diode and measure LNA noise
waves

* Measure the antenna balun loss

In the field:

 Measure the antenna S11 and 3-position switched spectrum

Using EM simulations

e Estimate the antenna and ground plane loss

Obtain absolute calibration of sky spectrum processing

e Using lab calibration data, antenna S11 and losses obtain sky spectrum

* Use wei%hted least squares with up to 6 physics based “basis” functions to
remove foreground, ionosphere and solve for hydrogen line signature

* Error estimates from covariance matrix



Calibration HOT load of known temperature
Heated 50 ohm load with temperature probe

shown with cover removed

Corrections required for high accuracy:
1] S11 measurement vs temperature — as load changes with temperature

2] Input line loss — plus assumption of temperature gradient



Open/shorted cable used to calibrate LNA noise waves
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Noise source with filter
used as “artificial”
antenna

Tungsten lamp load for check
of calibration — resistance is

measured to obtain
temperature of filament
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Basis functions used to remove foreground and ionosphere
and make estimates of the spectral index, curvature in the
spectral index as well as the ionospheric absorption and
emission

function Purpose
0 f-25 Scale
1 log(f) f 2> Spectral index
2 (log(f))?f 2> foreground gamma
3 f -4 lon absorption
4 f-20 lon emission
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RADIO FREQUENCY INTERFERENCE (RFI)
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Relative sparseness of
RFI from FM radio

Effects of FM radio on
absorption signature

RFI from FM radio signals reflected from meteors which burn up at about 100 km. Sites
need to be more than 2000 km from FM radio to completely avoid this source of RFI.
Effects of FM radio reflected from the moon about 0.05 K max when moon is close to the
zenith.



TESTS and CHECKS performed with EDGES-2

e Sensitivity to receiver calibration and S11 error

e Performed receiver recalibration — test suggested by Irwin Shapiro

e Changed antenna orientation

e Data from 2 separate lowband antennas on different ground planes

e Changed ground plane size

e Removed balun shield and other checks for possible resonances

e Measured absorption over full range of LST

e Checked for effects of ionosphere absorption and emission

e Checked for RFI effects on absorption including reflection from moon
e Checked sensitivity to foreground fitting

* Have 2 independently developed processing pipelines Haystack’s and ASU’s

e Checked effects of processing data with calibration at made at different
temperatures

* Checked effects of beam correction with FEKO & HFSS and effect of no beam
correction

e Checked effect of making no balun and other loss corrections




Horizontal profile view of the
br::nr blade antenna design with same
dimensions as the planar mid-band
blade antenna, except 12cm panel
height so that receiver can be located
inside an antenna panel.
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Shou n with optional batteries for field campaigns.

EDGES 3 system with built-in Calibration and all electronics in antenna proposed in

November 2018. The advantages are:

 Reduced loss and less delay in antenna S11 - since balun is not needed

e Automated Calibration
 Easier deployment
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West

Forks
Adel

Green Bank

Integrated strength of FM radio for continental USA from radio-locator.com

Quietest regions: West Forks, ME Adel, Oregon -better than Green Bank



SPECTRA using EDGES-1 in 2009
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Figure 4. Spectra from the Catlow Valley sites with Boolardy for reference. The vertical scale is from 10 to 60 dB above 1 Kelvin.



Skull reek from explorator visit in January 2019

FM Channels
TrueNorth

........ A —tzimuthes Ft act Wire grid ground plane

callsign channel xmit(kw) Rx(dém) Path Disti(mi) True (magn) LOS

Search Criteria

Lat: 42.39***
Lon: -118.76***
Height: 25.0 ft.

Bk WEE W S used during EDGES-2 test
at West Forks Maine 2011

Radio quiet site in the Catlow Valley region of Oregon

Lat 42.3870 Long -118.7614 deg. — different longitude checks absorption not RFI from
synchronous satellite

Tentative plan to deploy in late June 2019 using 30x16m wire grid 12cm spacing ground plane
Estimated ground loss ~ 0.5 %

Beam chromaticity ~ 80 mK 5-terms 60 — 120 MHz average 2hr blocks over all LST

Loss chromaticity ~ 20 mK 5-terms 60 — 120 MHz average 2hr blocks over all LST



thank you

Questions?

Comments?

EDGES memos are at
www.haystack.mit.edu/ast/arrays/Edges
loco.lab.asu.edu/memos
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