

The VLA Sky Survey (VLASS): A New Generation Radio Sky Survey with the VLA

Amy Kimball (NRAO)

for the VLA Sky Survey team

Karl G. Jansky Very Large Array

- High desert plain of New Mexico, USA
- 27 antennas (25-m)
- 1-50 GHz + low-bands (P,W)
- 1-km to 30-km (four configs)

Why a VLA Sky Survey and why now?

- Survey science is an increasing fraction of VLA publications
- 20 years since VLA surveys FIRST and NVSS; 5+ years before SKA-1
- New scientific opportunities
 - build time series for time domain studies
 - multi-messenger surveys need radio counterpart with comparable or better resolution
- Community driven survey
 - Astronomy community proposed new survey taking advantage of VLA's upgraded capabilities
 - Reviewed by independent panel, approved by NRAO Director in 2015

Upgraded VLA capabilities relevant for sky survey

- Wide bandwidths:
 - Continuum sensitivity
 - Spectral index information
 - Rotation measure studies
- Correlator flexibility:
 - Very fast dump times (> 5-ms)
 - High spectral resolution, extremely flexible tuning
- New "On-the-Fly" mosaicking mode:
 - Decreased overheads for large, relatively shallow surveys

On-The-Fly-Mosaicking observations

- Antennas scan while taking array data
 - VLASS net survey speed ~20 deg²/hr
 - Scan rate 3.31'/s
 - Correlator dump 0.45s (1.5'/integration)

VLASS Survey Definition

- Highest spatial resolution, all-sky radio survey to date
 - Frequency: 3 GHz (2-4 GHz, less RFI affected regions) "S-band"
 - 1024 x 2-MHz channels
 - Synoptic: 3 epochs separated by 32 months
 - Observing time: 920 hours per configuration cycle X 6 cycles

Area	Resolution	Rms	Density	Total Detections
(deg ²)	(robust)	(µJy/bm)	(deg ⁻²)	
33,885 (δ > -40°)	2.5″	120 \ 69	~150	5,000,000

• Full survey, 7 years observing: September 2017 --- October 2024

VLASS Basic Data Products (Public!)

Product	Production timescale: Goal (requirement)	Notes
Raw visibility data	Immediate	In standard archive
Calibrated data	1 week (1 month)	From standard archive
Quick Look Images	2 days (1 week)	Stokes I wide-band continuum only
Single Epoch Images	6 months (12 months)	Stokes I wide-band continuum
Single Epoch Images	12 months (16 months)	Polarization and cubes
Single Epoch Catalogs	w/Single Epoch Images	By product
Cumulative Images	12 months (16 months)	Stokes I wide-band continuum
Cumulative Images	12 months (16 months)	Polarization and cubes
Cumulative Catalogs	w/Cumulative Images	By product

<u>~IPB</u>
Raw data 523 TB
Images 440 TB

- CASA ALMA/VLA data calibration pipeline (VLASS "recipe")
- New imaging pipeline
- NRAO → Science-Ready Data Products

VLA Sky Survey Team at NRAO

- Project director: Claire Chandler
- Project Scientist: Mark Lacy (Project Scientist)
- Technical Lead: Steve Myers
- Operations coordinator: Amy Kimball
- Scientific research, development, coordination team: Joshua Marvil,
 Frank Schinzel, Anna Kapinska, Joan Wrobel, Lorant Sjouwerman
- Computing team: James Robnett, Stephan Witz, Daniel Lyons, Felipe Madsen
- Pipeline developers: Brian Kent, Joseph Masters
- Data Analyst team (operations, quality assurance): Drew Medlin (DA Lead), Karlee Radford, Angelica Vargas, Alex Sobotka

Current VLASS status

- "Pilot" survey: May Sep 2016
 - ~200 hours observing, ~2400 deg² (Galactic centre and representative extra-galactic observing fields; overlap with FIRST/SDSS)
 - some areas observed 3x to demonstrate full survey sensitivity
- "VLASS 1.1": 1st half of 1st epoch Sep 2017 Feb 2018
 - 920 hours observing, \sim 16,831 deg²
 - > 94,000 GB of raw data + calibrations available in NRAO data archive
 - nearly 17,000 deg² of "QuickLook" images available in NRAO data archive
 - development for "Single Epoch" data products ongoing
- "VLASS 1.2": 2nd half of 1st epoch Feb Jul 2019 (current)

VLASS resolution is key!

Resolution enabling association with optical galaxy

FIRST contours on SDSS

SDSS (red/green) image overlay on VLASS (blue).

Initial results: polarization mapping

3C 402 North

3C 402 South

M. Lacy et al. (in prep)

Initial science results: Giant Radio Galaxies

- Villarreal Hernández & Andernach (astro-ph 1808.07178)
 - Identified 9 new Giant Radio Galaxies from 4300 deg² of QL images

Initial science results: Luminous decades-long transient

Sky survey challenges

VLASS Challenges: Sky coverage / tiling

• Goal: constant RA observing pressure in each observing epoch

Observing challenges: RFI / satellite avoidance

Results of RFI sweep

Strong RFI leads to gain compression

Areas of sky (az/el) to avoid worst of compression

WIND: phase errors, antennas stow

Short observing blocks \rightarrow High Overhead

Challenges: ionosphere (TEC: total electron count)

TEC vs position

TEC vs time

Conclusion: due to coarse sampling of TEC models, little effect on data. Will not use. (Can investigate higher-res models.)

VLASS imaging challenges

- Algorithm for Single-Epoch products (Sanjay and Preshanth talks yesterday)
 - Wide-field effects and beam rotation:
 AW-projection
 - Polarization: full-Mueller?
 - Spectral indices / wide-band effects
 - x2 change in primary beam size
 - Pointing offset corrections
 - Add reference pointing to observations?

All problems solvable with time/computing = \$\$\$

S. Bhatnagar's talk

Community Effort:

Led by Shea Brown (U. lowa)

https://bablai.com/vlass

- Machine Learning for source classification
- Training on VLASS QuickLook images (prep for cubes)
- Basic catalogs and postage-stamp images

Enhanced Data Products & Services Community led effort

- Transient Object Catalogs & Alerts
- Multi-Wavelength Catalogs for VLASS sources
- Rotation Measure Images and Catalogs
- Light Curves (IQU)
- A hosted VLASS Archive with Image and Catalog Service
- ♦ e.g., as currently available by IPAC/IRSA allowing for VLASS to be integrated with Spitzer/Planck /WISE/Euclid/etc...

VLITE: A commensal VLA(SS) survey

(with thanks to Tracy Clarke, NRL)

VLA Low Band Ionosphere and Transient Experiment (VLITE) Clarke et al. (2016)

U.S. NAVA

- VLA "P-band" dipoles installed at prime focus
- Independent optical stream and independent correlator
 - 15 antennas, 330 MHz band
 - 320 384 MHz, $\Delta v = 100 \text{ kHz}$
 - 2s integrations
 - Full polarization (linear)
 - Field of view: $> 5 \text{ deg}^2$
 - 5" 3' resolution, up to 1° largest angular scale

The Power of a Low Frequency Commensal System: Sky Coverage

WIDAR 12 months:

- Deepest P band field is 22h

VLITE 24 month:

U.S.NAVAI

RESEA

- VLITE recorded ~12,540h or 71% wall time

- Deepest P band field is > 520h (COSMOS) over 669 days

Double-double radio galaxy B1834+620

U.S.NAVAL

RESEARCH

Center of cluster Abell 566

VLA Sky Survey summary

- Highest spatial resolution all-sky radio survey ever undertaken
 - Resolution critical for cross-identification with other wavelengths
 - Multi-epoch for transient identification
 - Polarimetry to reveal the magnetic universe
- On 2nd observing cycle (observing remainder of sky, 1st pass)
 - Raw data, calibrations, "QuickLook" images available
- Overcoming obstacles
 - Scheduling/observing for RFI
 - Algorithm research/development for Single-Epoch images

www.nrao.edu science.nrao.edu public.nrao.edu

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

