

di Cagliari

uGMRT timing of the eccentric binary millisecond pulsar NGC 1851A

Alessandro Ridolfi

INAF - Osservatorio Astronomico di Cagliari

and

P. C. C. Freire, Y. Gupta, S. M. Ransom

MWSKY-II

Pune, March 19, 2019

Outline

I) Introduction:

- Pulsars in globular clusters (GCs)
- PSR J0514-4002A (a.k.a. NGC 1851A)

2) uGMRT observations

Secondarison with previous data

3) **Results**

- Binary component masses
- Proper motion
- Search for pulsations from the companion star
- 4) Summary & Outlook

Pulsars in Globular Clusters

Globular Clusters (GCs) are spherical, gravitationally bound groups of 10⁴ - 10⁶ stars.

Currently ~150 known orbiting the Milky way. https://www.physics.mcmaster.ca/~harris/mwgc.dat

Star densities at the GC cores over 10³ per cubic parsec.

V

Ideal environments for formation and disruption of binaries, for the spin-up of pulsars through accretion processes, and the formation of exotic systems through repeated exchange interactions.

Exciting pulsars can be found in Globular Clusters!

Pulsars in Globular Clusters

150 pulsars in 28 globular clusters

(http://www.naic.edu/~pfreire/GCpsr.html)

Timing of NGC 1851A

Freire et al. (2004):

- Discovery with the GMRT at 327 MHz
- Binary characteristics detemined
- Most eccentric binary at the time
- Nature of the companion unclear

P = 4.99 ms DM ~ 52 pc cm⁻³

Timing of NGC 1851A

Freire et al. (2007):

- 2-year timing with the GBT
 - → phase-connected timing solution
- No eclipses
 - \rightarrow no extended companion

• Measurement of rate of advance of periastron, $\dot{\omega}$

 \rightarrow M_{tot} = M_p+M_c = 2.45 M_{sun}.

 $\rightarrow M_p < 1.50 M_{sun}$ $\rightarrow M_c > 0.93 M_{sun}$

The upgraded GMRT (uGMRT)

- New wideband receivers
- New backend with:
 - coherent dedispersion (CDP)
 - up to 400 MHz bandwidth
- 3x better sensitivity!

Possibility of measuring

additional PK parameters, and more

I-year observing campaign (Apr 2017 - Mar 2018) of NGC 1851A with the uGMRT

Observation specs:

- Frequency: **300-500 MHz** (Band 3)
- Backend: **GWB** in PA + CDP mode, whenever possible
- Antennas: **12-14** from the central array

Dispersion

The ionized component of the ISM is a dispersive medium.

$$\Delta t_{(f_1, f_2)} = \frac{e^2}{2\pi m_e c} \cdot \left(\frac{1}{f_1^2} - \frac{1}{f_2^2}\right) \cdot \text{DM}$$

where:

$$\mathrm{DM} = \int_0^d n_e dl$$

is called "Dispersion Measure"

Credits: Andrew Lyne

Incoherent vs coherent de-dispersion

Incoherent de-dispersion:

Coherent de-dispersion:

Impact of coherent dedispersion (CDP) on NGC 1851A

Post-Keplerian parameters

Freire et al. (2007): $\dot{\omega} = 0.01289(4) \text{ deg/yr}$ $\rightarrow M_{tot} = 2.453(14) \text{ M}_{sun}$ Ridolfi et al., in press: $\dot{\omega} = 0.0129592(16) \text{ deg/yr}$ $\rightarrow M_{tot} = 2.4730(6) \text{ M}_{sun}$ $\gamma = 0.0216(9) \text{ s}$

Measurement of component masses!

$$M_p = 1.25 \pm 0.05 M_{sun}$$

 $M_c = 1.22 \pm 0.05 M_{sun}$

Lightest MSP with a precisely measured mass!

Proper Motion

The much larger baseline allowed us to measure the proper motion of the system

NGC 1851A (Ridolfi et al., in press): 0.2 $\mu_{\alpha} = +5.19 \pm 0.22 \text{ mas yr}^{-1}$ 0.1 $\mu_{\delta} = -0.56 \pm 0.25 \text{ mas yr}^{-1}$ Θ_δ (arcmin) 0 Cluster (GAIA Collab. 2018): -0.1 $\mu_{\alpha} = +2.1308 \pm 0.0037 \text{ mas yr}^{-1}$ NGC 1851A $\mu_{\delta} = -0.6220 \pm 0.0040 \text{ mas yr}^{-1}$ -0.2 0.2 0.1 -0.1 -0.2 0.3 0 -0.3 Θ_{α} (arcmin)

Relative linear velocity: $\sim 173 \pm 13$ km/s (assuming d = 12.1 kpc)

Escape velocity at the cluster core: ~42.9 km/s (Baumgardt & Hilker 2018)

Is the system bound to the cluster?

Nature of the companion

Companion to NGC 1851A is:

- Compact
- Massive
- \rightarrow either a WD or a NS
- \rightarrow If it is a NS, it could also be a pulsar!

NS?

WD ?

Search for pulsations from the companion

Search for pulsations from the companion

Summary

Fiming NGC 1851A with the uGMRT, together with old GBT data, allowed us to:

- Greatly improve the measurement of $\dot{\omega}$
- Measure the Einstein delay, γ
- Measure the system's proper motion

Recycling can be achieved with a very small amount of matter!

No radio pulsations were detected from the companion star

Outlook

New uGMRT proposal submitted for follow-up timing to:

- Solve the mistery of the proper motion
- Increase the precision of the Einstein delay, γ
- Possibly detect the Shapiro delay

One more thing...

Many more clusters observed with the uGMRT are currently being searched

→ many more exciting pulsars to be discovered soon!

See Tasha Gautam's poster!

