Probing gravity in the strong field regime

Universality of free fall from the orbital motion of a pulsar in a stellar triple system

Anne M. Archibald ${ }^{1,2 *}$, Nina V. Gusinskaia ${ }^{1}$, Jason W. T. Hessels ${ }^{1,2}$, Adam T. Deller ${ }^{3,4}$, David L. Kaplan ${ }^{5}$, Duncan R. Lorimer ${ }^{6,7}$, Ryan S. Lynch ${ }^{7,8}$, Scott M. Ransom ${ }^{9}$ \& Ingrid H. Stairs ${ }^{10}$

Einstein's theory of gravity-the general theory of relativity ${ }^{1}$-is based on the universality of free fall, which specifies that all objects accelerate identically in an external gravitational field. In contrast to almost all alternative theories of gravity ${ }^{2}$, the strong equivalence principle of general relativity requires universality of free fall to apply even to bodies with strong self-gravity. Direct tests of this principle using Solar System bodies ${ }^{3,4}$ are limited by the weak selfgravity of the bodies, and tests using pulsar-white-dwarf binaries ${ }^{5,6}$ have been limited by the weak gravitational pull of the Milky Way. PSR J0337+1715 is a hierarchical system of three stars (a stellar triple system) in which a binary consisting of a millisecond radio pulsar and a white dwarf in a 1.6-day orbit is itself in a 327-day orbit
nonlinearity of gravity, and γ, which measures the degree to which gravity curves space-time. Both of these parameters take the value 1 in general relativity. We chose a point-particle Lagrangian that permits arbitrarily strong gravity internal to the bodies and parameterized post-Newtonian interactions between them ${ }^{10}$. We then used computer algebra ${ }^{11}$ to construct equations of motion. Each orbit was specified by an initial system configuration at modified Julian date (MJD) 55,920.0 (2011 December 25 00:00:00 UTC). The evolution of this configuration was governed by β, γ and the strong equivalence principle (SEP)violation parameter Δ. Because the self-gravity of the pulsar (which is a neutron star) exceeds that of the white dwarfs by a factor 10^{4} and the SEP violation that we seek arises from self-gravity, we neglect possi-

"Pulsar Timing"

Using pulsars as precision clocks

Pulsar Timing Model

Input to PTAs
Basic Method
Actual Pulse TOA

- Thooretical Model
$=$ Timing Residual

$$
T_{\mathrm{th}}=\nu t+\frac{1}{2} \dot{\nu} t^{2}+D \frac{\int_{0}^{d} n_{e} d l}{f^{2}}-\frac{1}{c}(\vec{r} \cdot \hat{s})+\frac{V_{\mathrm{T}}^{2} t^{2}}{2 c d}-\frac{(\vec{r} \times \hat{s})^{2}}{2 c d}+\ldots
$$

What does this teach us?

Count each pulse... for years.

PSR JIOI 2+5307:

$P=0.005255749014115410$ +/- 0.000000000000000015s

> 100 billion pulses in the last I5 years, and not a single one missed

Pulsar Recycling

Alpar, Cheng, Ruderman \& Shaham 1982
Rhadakrishnan \& Srinivasan 1982

LMXB (some IMXB)

Millisecond pulsars are the products of astrophysical accretion

Keplerian Timing Effects

Need mass function + two other equations for m1, m2, and i

Post-Keplerian Effects

Periastron adv. $\dot{\omega}=3\left(\frac{P_{b}}{2 \pi}\right)^{-5 / 3}\left(T_{\odot} M\right)^{2 / 3}\left(1-e^{2}\right)^{-1}$
Grav. redshift $\quad \gamma=e\left(\frac{P_{b}}{2 \pi}\right)^{1 / 3} T_{\odot}^{2 / 3} M^{-4 / 3} m_{2}\left(m_{1}+2 m_{2}\right)$
Orbital decay
Orbital decay
$\dot{P_{b}}=-\frac{192 \pi}{5}\left(\frac{P_{b}}{2 \pi}\right)^{-5 / 3}\left(1+\frac{73}{24} e^{2}+\frac{37}{96} e^{4}\right)\left(1-e^{2}\right)^{-7 / 2} T_{\odot}^{5 / 3} m_{1} m_{2} M^{-1 / 3}$
shapiro delay $\left\{\begin{array}{c}r=T_{\odot} m_{2} \quad \text { "Range" } \\ s=x\left(\frac{P_{b}}{2 \pi}\right)^{-2 / 3} T_{\odot}^{-1 / 3} M^{2 / 3} m_{2}^{-1} \text {. } \quad \operatorname{sin~i~"Shape"~}\end{array}\right.$
Depend on m 1 , m 2 , and the Keplerian parameters Measure any 2 PK params and get m1, m2

Nobel Prize Physics 1993

Russell Hulse \& Joseph Taylor
"for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation"

Pulsar riddle

PSR J0337+1715

Time

Pulsar riddle

PSR J0337+1715

WHITE DWARF

PULSAR J0337+1715

WHITE DWARF

$$
\begin{gathered}
\text { Outer Orbit } \\
P_{\text {orb }}=327 \text { days } \\
\mathrm{MwD}_{\mathrm{wd}}=0.41 \mathrm{M}_{\text {sun }}
\end{gathered}
$$

PSR 10337+1715 . Inner Orbit

Triple System
$P_{\text {orb }}=1.6$ days
$M_{\text {PSR }}=1.44 M_{\text {sun }}$ $M_{w d}=0.20 M_{\text {sun }}$

Pulsar riddle

PSR J0337+ 1715
Dynamical interactions between the two nested binaries

Westerbork data

Pulsar riddle

PSR J0337+1715

Work done by Anne Archibald, directly integrating the motions of the 3 bodies

J0337+17 I5 - Timing model

Pulsar mass: I.4378(13) MSun "Inner" WD mass: 0.1975I(I5) MSun "Outer"WD mass: 0.410I(3) MSun

Strong Equivalence Principle

All objects should fall with same acceleration regardless of their mass or composition

Effects of an SEP violation

Key idea: test whether two bodies fall the same way in the gravitational field of a third
Need: binary falling in an external gravitational field

- Earth and Moon falling in Sun's gravity (LLR)
- Pulsar-WD binary falling in Galactic potential (e.g. Gonzalez et al.)
- Triple system: pulsar and inner WD falling in gravity of outer WD

Fractional difference in acceleration ($\Delta=M_{g} / M_{i}-1$) shifts the massive object's orbit in the direction of the external acceleration

Effects of an SEP violation

Key idea: test whether two bodies fall the same way in the gravitational field of a third
Need: binary falling in an external gravitational field

- Earth and Moon falling in Sun's gravity (LLR)
- Pulsar-WD binary falling in Galactic potential (e.g. Gonzalez et al.)
- Triple system: pulsar and inner WD falling in gravity of outer WD
Fractional difference in acceleration ($\Delta=M_{g} / M_{i}-1$) shifts the massive object's orbit in the direction of the external acceleration

Effects of an SEP violation

Key idea: test whether two bodies fall the same way in the gravitational field of a third
Need: binary falling in an external gravitational field

- Earth and Moon falling in Sun's gravity (LLR)
- Pulsar-WD binary falling in Galactic potential (e.g. Gonzalez et al.)
- Triple system: pulsar and inner WD falling in gravity of outer WD
Fractional difference in acceleration ($\Delta=M_{g} / M_{i}-1$) shifts the massive object's orbit in the direction of the external acceleration

Effects of an SEP violation

Key idea: test whether two bodies fall the same way in the gravitational field of a third
Need: binary falling in an external gravitational field

- Earth and Moon falling in Sun's gravity (LLR)
- Pulsar-WD binary falling in Galactic potential (e.g. Gonzalez et al.)
- Triple system: pulsar and inner WD falling in gravity of
 outer WD
Fractional difference in acceleration ($\Delta=M_{g} / M_{i}-1$) shifts the massive object's orbit in the direction of the external acceleration

Effects of an SEP violation

Key idea: test whether two bodies fall the same way in the gravitational field of a third
Need: binary falling in an external gravitational field

- Earth and Moon falling in Sun's gravity (LLR)
- Pulsar-WD binary falling in Galactic potential (e.g. Gonzalez et al.)
- Triple system: pulsar and inner WD falling in gravity of outer WD
Fractional difference in acceleration ($\Delta=M_{g} / M_{i}-1$) shifts the massive object's orbit in the direction of the external acceleration

As the outer white dwarf orbits the inner binary, an SEP violation would raise an excess eccentricity directed at it.

Effects of an SEP violation

Key idea: test whether two bodies fall the same way in the gravitational field of a third
Need: binary falling in an external gravitational field

- Earth and Moon falling in Sun's gravity (LLR)
- Pulsar-WD binary falling in Galactic potential (e.g. Gonzalez et al.)
- Triple system: pulsar and inner WD falling in gravity of outer WD

Fractional difference in acceleration ($\Delta=M_{g} / M_{i}-1$) shifts the massive object's orbit in the direction of the external acceleration

As the outer white dwarf orbits the inner binary, an SEP violation would raise an excess eccentricity directed at it.

Effects of an SEP violation

Key idea: test whether two bodies fall the same way in the gravitational field of a third
Need: binary falling in an external gravitational field

- Earth and Moon falling in Sun's gravity (LLR)
- Pulsar-WD binary falling in Galactic potential (e.g. Gonzalez et al.)

- Triple system: pulsar and inner WD falling in gravity of outer WD

Fractional difference in acceleration ($\Delta=M_{g} / M_{i}-1$) shifts the massive object's orbit in the direction of the external acceleration

As the outer white dwarf orbits the inner binary, an SEP violation would raise an excess eccentricity directed at it.

Effects of an SEP violation

Key idea: test whether two bodies fall the same way in the gravitational field of a third
Need: binary falling in an external gravitational field

- Earth and Moon falling in Sun's gravity (LLR)
- Pulsar-WD binary falling in Galactic potential (e.g. Gonzalez et al.)
- Triple system: pulsar and inner WD falling in gravity of outer WD
Fractional difference in acceleration ($\Delta=M_{g} / M_{i}-1$) shifts the massive object's orbit in the direction of the external acceleration

As the outer white dwarf orbits the inner binary, an SEP violation would raise an excess eccentricity directed at it.

Effects of an SEP violation

Key idea: test whether two bodies fall the same way in the gravitational field of a third
Need: binary falling in an external gravitational field

- Earth and Moon falling in Sun's gravity (LLR)
- Pulsar-WD binary falling in Galactic potential (e.g.
 Gonzalez et al.)
- Triple system: pulsar and inner WD falling in gravity of outer WD
Fractional difference in acceleration ($\Delta=M_{g} / M_{i}-1$) shifts the massive object's orbit in the direction of the external acceleration

Observations

Tel.	Band	Num.	Hours	Date range
AO	1400	92	58.9	2012 Mar-2017 Mar
GBT	1400	172	236.0	2012 Feb-2017 May
WSRT	1400	439	836.7	2012 Jan - 2013 Jul
AO	430	36	12.9	2012 May-2017 Mar
WSRT	350	20	17.3	2012 Feb-2013 Jul

Timing model

No adequate formula is known for directly describing the three-body orbit, so we use direct integration of equations of motion:

$$
\begin{equation*}
F_{j}=M_{j, l} a_{j} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{j}=-\sum_{k} \frac{G M_{j, G} M_{k, G}}{r_{j k}^{2}} \hat{r}_{j k} \tag{2}
\end{equation*}
$$

A standard ODE solver allows us to calculate an orbit given initial conditions.
This scheme is easily adapted to allow gravitational mass different from inertial mass.

Relativistic timing model

- Nordtvedt (1985) derives a "point particle" Lagrangian
- Taylor expansion around the Newtonian Lagrangian
- Lorentz invariance and symmetry used to eliminate terms
- Bodies may contain strong fields but internal structure is frozen
- Fields away from bodies approximated to first post-Newtonian order
- Computer algebra straightforwardly yields equations of motion
- Direct integration simulates orbits

$$
\begin{aligned}
L_{P P N}= & -\sum_{i} M_{i, l}\left(1-\frac{v_{i}^{2}}{2}-\frac{v_{i}^{4}}{8}\right) \\
& +\frac{1}{2} \sum_{i, j} \frac{M_{i, G} M_{j, G}}{r_{i j}}\left(1+\frac{v_{i}^{2}+v_{j}^{2}}{2}-\frac{3 v_{i} \cdot v_{j}}{2}-\frac{\left(v_{i} \cdot \hat{r}_{i j}\right)\left(v_{j} \cdot \hat{r}_{i j}\right)}{2}\right) \\
& +\frac{\gamma}{2} \sum_{i, j} \frac{M_{i, G} M_{j, G}}{r_{i j}}\left(v_{i}-v_{j}\right)^{2}+\left(\frac{1}{2}-\beta\right) \sum_{i, j, k} \frac{M_{i, G} M_{j, G} M_{k, G}}{r_{i j} r_{i k}}
\end{aligned}
$$

Testing the SEP

In principle we simply:

- include Δ in the timing model,
- fit timing model to TOAs, and
- determine best-fit values and uncertainties.

Ideally, the value of Δ and its uncertainty would determine how well we constrain SEP violation and whether GR is violated.

But: only correct once we've accounted for all systematics, and formally the effects of Δ are constrained at the 7 ns level.

Known systematics

Cause	Remedy
Profile variation with frequency	TOAs no more than 20 MHz
Telescope polarization variations	Matrix template matching
Intrinsic profile variations	$?$
Interstellar DM variations	Variable DM fitting
Interplanetary medium effects	IPM fitting
Tidal effects in inner WD	Too small
GW losses	Too small
Red noise	Too small at freq. of interest
Uncertainty in DE435 ephemeris	Position fitting
Kopeikin and inverse parallax	Too small
Kabouters	$?$

We need to estimate the impact of unknown or poorly modeled systematics.

The signature of an SEP violation

Key idea: look for structure in the residuals that looks like SEP violations.
SEP violation produces a shift in the pulsar's orbit toward the the outer companion: approximately a sinusoid with frequency $2 f_{\text {inner }}-f_{\text {outer }}$.

The signature of an SEP violation

Key idea: look for structure in the residuals that looks like SEP violations.
SEP violation produces a shift in the pulsar's orbit toward the the outer companion: approximately a sinusoid with frequency $2 f_{\text {inner }}-f_{\text {outer }}$.

(turns)

Wiggles in our residuals

Look at sinusoids with frequency $k f_{\text {inner }}+l f_{\text {outer }}$:

Estimate no more than $\sim 77 \mathrm{~ns}$ in the SEP position based on distribution of all arrows.

Best-fit values

When we carry out the basic fitting, we obtain

$$
\Delta=(-1.1 \pm 0.2) \times 10^{-6} .
$$

But: that's a σ corresponding to a 7 ns uncertainty. If we take into account all the wiggles we see in the data from our arrow plot we get a more realistic σ corresponding to a 22 ns uncertainty:

$$
\Delta=(-1.1 \pm 0.7) \times 10^{-6}
$$

We conclude that our result agrees with General Relativity at the 1.6σ level.

An upper limit on SEP violation

With the best-fit value and uncertainty we computed, we can set a 2σ upper limit on SEP violation. We can say that for a $1.4378 M_{\odot}$ neutron star, its acceleration differs from that of its white dwarf companion:

$$
|\Delta|<2.6 \times 10^{-6}
$$

Fundamentally, this difference in acceleration is the key quantity we limit. So we constrain any theory that predicts such an anomalous difference in acceleration, for example, Einstein-Aether or scalar-tensor theories.

But: how does our result compare to existing tests?

An upper limit on SEP violation

With the best-fit value and uncertainty we computed, we can set a 2σ upper limit on SEP violation. We can say that for a $1.4378 M_{\odot}$ neutron star, its acceleration differs from that of its white dwarf companion:

$$
|\Delta|<2.6 \times 10^{-6}
$$

(Triple system)

The wide pulsar-white-dwarf binary PSR J1713+0747 falling in the Galactic potential gives:

$$
\begin{equation*}
|\Delta|<2 \times 10^{-3} \tag{WB}
\end{equation*}
$$

But: how do we compare this to lunar laser ranging or dipole gravitational wave tests?

The Nordtvedt parameter

In PPN we measure a theory's SEP violation by using the Nordtvedt parameter:

$$
\Delta=\eta_{N} \frac{E_{g}}{M c^{2}}
$$

Lunar Laser Ranging constrains the Earth-Moon-Sun system to $|\Delta|<1.3 \times 10^{-13}$, and for the Earth $E_{g} / M c^{2} \sim-4.5 \times 10^{-10}$, so $\left|\eta_{N}\right|<2.4 \times 10^{-4}$.
In the triple system, the pulsar interior is not 1PN!

The Nordtvedt parameter

In PPN we measure a theory's SEP violation by using the Nordtvedt parameter:

$$
\Delta=\eta_{N} \frac{E_{g}}{M c^{2}}
$$

Lunar Laser Ranging constrains the Earth-Moon-Sun system to $|\Delta|<1.3 \times 10^{-13}$, and for the Earth $E_{g} / M c^{2} \sim-4.5 \times 10^{-10}$, so $\left|\eta_{N}\right|<2.4 \times 10^{-4}$.
In the triple system, the pulsar interior is not 1PN!
We can calculate the "strong-field Nordtvedt parameter" $\hat{\eta}_{N}$ the same way:

$$
\Delta=\hat{\eta}_{N} \frac{E_{g}}{M c^{2}}
$$

Since $|\Delta|<2.6 \times 10^{-6}$ and $E_{g} / M c^{2} \sim-0.1,\left|\hat{\eta}_{N}\right|<2.6 \times 10^{-5}$ - improving on LLR by a factor of about ten.

But: funny things can happen in the strong field!

Quasi-Brans-Dicke scalar-tensor theories

These theories include a scalar field ϕ in addition to the metric that mediates gravity. Matter responds to a modified version of the metric:

$$
\tilde{g}_{\mu \nu}=e^{2\left(\alpha_{0} \phi+\beta_{0} \phi^{2} / 2\right)} g_{\mu \nu}^{*}
$$

The scalar field is sourced in matter:

$$
\square \phi=-\frac{4 \pi G^{*}}{c^{4}}\left(\alpha_{0}+\beta_{0} \phi\right) T_{*}
$$

If $\beta_{0} \lesssim-4$ spontaneous scalarization can occur, resulting in order-unity deviations from GR in strong fields, no matter how small the weak-field effects are.

Our constraint on quasi-Brans-Dicke theories

Our constraint $|\Delta|<2.6 \times 10^{-6}$ rules out the light-gray area.

Universality of free fall

Tests the foundation on which Einstein's theory of gravity, general relativity, is built:

- Used I200hr of WSRT, GBT and Arecibo data to see if pulsar and white dwarf fall differently towards a 2nd white dwarf companion.
- Find equal accelerations to within a few parts in a million. Best-ever test of the strong equivalence principle:

Pulsar triple system PSR J0337+1715

$$
|\Delta|<2.6 \times 10^{-6}
$$

Does Extreme Gravity Change How Things Fall? The Triple System PSR J0337+1715
 Microsecond-accurate measurements of the

Universality of Free Fall from the Orbital Motion of a Pulsar in a Stellar Triple Șystem
Naturé, 2018 July 5
Archibald, A. M., Gusinskaia, N. V., Hesselș, J. W. T.; Deller, A. T., Kaplan, D. L., Lorimer, D. R., Lynch, R. S., Ransom, S. M., Stairs, I. H.

Even with its extreme gravity, the pulsar falls . exactly the way Einstein predicted

