Cosmic-ray astronomy with low-frequency radio telescopes

Justin Bray University of Manchester

image: ASPERA collaboration ▲ 클 ▶ ▲ 클 ▶ ▲ 클 ▶ = 클 ________ Cosmic rays Cosmic-ray detectors Radio cosmic-ray detectors Radio **telescopes** as cosmic-ray detectors atmospheric detection lunar detection

Sac

Cosmic rays

What are cosmic rays?

- bare nuclei (p-Fe)
- ▶ high energies ($\rightarrow 10^{20} \, \text{eV}$)
- rare ($\rightarrow 0.01/km^2/yr$)

Observables:

- arrival direction
- energy/spectrum
- composition

Depend on:

- source
- propagation

Observables: arrival direction

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Observables: energy/spectrum

Abraham et al. (Pierre Auger) 2010, PLB, 685, 239

Spectral cut-off: $E\gtrsim5 imes10^{19}\,{
m eV}$

- GZK effect: interactions with CMB photons
- or coincidence: max. energy from sources

Ankle: $E \sim 4 imes 10^{18} \, \mathrm{eV}$

- transition between galactic and extragalactic sources
- or recycling of cosmic rays in galactic magnetic field

(日)、

Observables: composition

Aab et al. (Pierre Auger Collaboration) 2014, PRD, 90, 122006

Composition becomes heavier at higher energies, but with large model uncertainties.

Depends on:

- seed population of high-energy particles
- acceleration efficiency in source
- attenuation during propagation
- photodisintegration to lighter species

・ロト・西ト・西ト・日・ 日・ シュウ

Cosmic-ray detectors

instrumented volume

remotely-monitored volume

Aperture depends on instrumented volume. Threshold and precision depend on array density.

Aperture depends on volume in field of view. Threshold and precision depend on sensitivity and distance.

Detection channels

Particle detectors, e.g.:

- KASCADE
- Tunka
- Telescope Array
- Pierre Auger
- ► HAWC

Cherenkov, e.g.:

- HESS
- MAGIC
- VERITAS

Radar, e.g.:

- TARA
- Jodrell Bank

Nitrogen fluorescence, e.g.:

- HiRes
- Pierre Auger
- Telescope Array

Acoustic, e.g.:

- ACORN
- SAUND
- AMADEUS

Radio, e.g.:

- LOPES
- CODALEMA

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Tunka-REX
- AERA

Radio emission from particle cascades

K.D. de Vries et al.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Geomagnetic emission is typically dominant ($\sim 90\%$) in atmosphere, but depends on field strength & orientation.

Discriminate with polarisation.

Coherence at scales of front thickness or width (0.1-100m).

Radio emission from particle cascades

Huege 2016, Phys. Rep. 620, 1

▲ロト ▲聞 と ▲ 語 と ▲ 語 と 一 語 … の Q ()~

Radio cosmic-ray detectors

Porter (1967)

Spencer & Rapley (2018)

Real-time detection in radio is difficult (RFI!).

Normal procedure: use particle detectors to trigger storage of buffered radio data.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Radio at the International Cosmic Ray Conference

figure: T. Huege

Radio telescopes as cosmic-ray detectors

Rather than building an array of antennas to study cosmic rays, why not use an existing one?

Aperture-array radio telescopes have an all-sky field of view.

Antenna-level buffers can be commensal with other observations.

Just need (preferably) a co-located array of particle detectors.

Array layout & scale

figure: A. Zilles

Radio telescopes as cosmic-ray detectors

Extents of radio arrays and per-antenna sensitivity set cosmic-ray energy range to which they are sensitive: $10^{17}-10^{19}$ eV

イロト イポト イラト イラト

Radio **telescopes** have particularly dense antenna arrays, so their strength is **precision** measurements of cosmic rays.

Cosmic-ray work with LOFAR

Operating with LBA-outer and 20 particle detectors (LORA).

ightarrow reconstruct $X_{
m max}$ parameter

Reconstructed X_{\max} values \rightarrow determine composition

(日)、

-

LOFAR $X_{\rm max}$ resolution: 16 g cm⁻²

Cosmic-ray work with LOFAR

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Toward cosmic-ray work with SKA-LOW

 $\begin{array}{l} \mbox{Projected $X_{\rm max}$ resolution} \\ \lesssim 10\,{\rm g\,cm^{-2}} \mbox{ (Zilles, 2017)} \end{array}$

Doesn't need most of the SKA-LOW signal pipeline!

image: N. Patra

First particle detector deployed at MWA/SKA-LOW site.

Lunar particle detection with radio telescopes

image credit: Ron Ekers

Huge area: $\sim 10^5\,\text{km}^2$

High threshold: $\sim 10^{20}\,{
m eV}$

Experimental challenges:

- ns-scale pulse detection
- RFI rejection
- ionospheric dedispersion
- moon in the beam

Lunar particle detection with radio telescopes

Bray et al., Phys. Rev. D 91, 063002 (2015)

pointing configuration

Bray et al., Astropart. Phys. 65, 22 (2015)

 $\mathcal{E}_{\min} = 0.0053 \ \mu V/m/MHz$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lunar particle detection with radio telescopes

Bray (2016); James et al. (2016); Winchen et al. (2018; prelim.)

No detections yet.

Ongoing work with:

- ► LOFAR (Winchen et al.)
- FAST (James et al.)
- SKA-LOW (HECP group)

One of these could achieve a detection, possibly more energetic than any cosmic rays detected thus far.

イロト イ押ト イヨト イヨト

Summary

There's a bewildering variety of instruments for detecting cosmic rays and related particles.

Low-frequency radio telescopes are one of them.

LOFAR, detecting cosmic rays in the atmosphere, is currently measuring their composition with exceptional precision.

SKA-LOW will improve dramatically on this.

Radio telescopes also have the potential to detect cosmic rays interacting on the moon, at the very highest energies.

Summary

There's a bewildering variety of instruments for detecting cosmic rays and related particles.

Low-frequency radio telescopes are one of them.

LOFAR, detecting cosmic rays in the atmosphere, is currently measuring their composition with exceptional precision.

SKA-LOW will improve dramatically on this.

Radio telescopes also have the potential to detect cosmic rays interacting on the moon, at the very highest energies.

Thanks for listening.