International Centre for Radio Astronomy Research

ICRAR

Fast Radio Bursts at Metre Wavelengths

Jean-Pierre Macquart and the CRAFT collaboration

THE UNIVERSITY OF WESTERN AUSTRALIA

FRBs are an affront to astrophysics

- With brightness temperatures ~10³⁵K, emission must be coherent and outrageously luminous
- Energy estimation requires knowledge of:
 - spectral range (1st part of talk)
 - distances (2nd part of talk)
 - beaming (unknown)
 - For a typical bright burst of 20 Jy ms at z=0.47, the (isotropic) energy received in the 300 MHz detection band alone would be 6x10³³J
 - Efficiency of coherent radio emission from pulsars is 10⁻¹¹ to 10⁻⁴: If similar efficiency to Crab giant pulses total FRB energy output is ~10⁴²J

Get out clause: Energetics assume isotropic emission. If emission is tightly beamed, energetics lower by $\Omega_{beam}/4\pi$. But then event rate is $4\pi/\Omega_{beam}$ higher!

Rogues' gallery of ASKAP FRBs @ 1.4 GHz

Shannon et al. 2018

Phased Array feed enables accurate determination of burst fluence and spectrum

Spectral properties of CRAFT FRBs

Equal-weight mean fluence of 23 bursts

Spectral index (-1.2 to -1.8) close to that of ordinary spin-powered pulsars (-1.4 to -1.6)

FRBs at <300 MHz?

FRB emission is patchy but mean spectrum, averagedover 23 well-calibrated burst spectra (ASKAP) at 1.4 GHzis $F_{\nu} \propto \nu^{-1.5 \pm 0.3}$ Macquart et al. 2019

This immediately implies

- The low frequency emission is crucial to understand the burst energetics
- Bursts should, on average, be more readily detectable at frequencies below 1.4 GHz

To date the lowest detections have been at 400 MHz

Are present lower-frequency surveys constraining on the emission physics?

LOFAR (Pilot pulsar survey) (Coenen et al 2014)

- Survey exposure 14,000 deg²h at 140 MHz
- Fluence cutoff 2750 ($\Delta T/1s$)^{1/2}Jy ms ΔT =0.66ms to 1.26s

ARTEMIS @ 150 MHz (Karastergiou et al. 2015)

- Searched DM<310 pc cm⁻³ to fluences >4470 (Δ T/1s)^{1/2}Jy ms
- Sensitive to burst durations shorter than 21ms

MWA (Tingay et al. 2015)

- Limiting fluence 700 Jy ms but only on 2s images
- Exposure 4700 deg²h

MWA-ASKAP shadowing

Sokolowski et al. 2018

We used the MWA to shadow the CRAFT fly's eye survey Telescopes well-matched in field of view and fluence sensitivity

170-200 MHz with 0.5s cadence imaging at 40 kHz resolution

Not a blind search — knowledge of the burst time and approximation position allows us to search to 5σ

- The 37±8 events day⁻¹sky⁻¹ burst rate measured by ASKAP at F>26 Jy ms is equivalent to an event every 27,000 deg²h
- Previous surveys could not have detected even a single counterpart to these bursts!

No 200 MHz FRB emission

We shadowed 7 FRBs, including a 420 Jy ms event

For spectral indices steeper than -1.5 we should have detected the bursts at 15-25 σ

We saw nothing

CRAF

What we should've seen Our limit

								\mathcal{F}_{183}	ected ^f		
FRB	UTC	DM _{tot} ^a	DM_{mw}^{a}	$t_{\rm arr}^{\rm b}$	t_{sweep}^{c}	$\tau_{\rm scat}^{\rm d}$	$\mathcal{F}_{1.4 \text{ GHz}}^{\text{e}}$	$\alpha = -1$	$\alpha = -2$	$\alpha = -1.8^{\text{g}}$	$\mathcal{U}_{5\sigma}^{\mathbf{h}}$
	Detection	(pc/cm ³)		(\$)	(S)	(ms)	(Jy ms)				(Jy ms)
171020	10:27:59.00	114.1	38.4	11.7	4.5	1.7	200^{+500}_{-100}	$1500\substack{+4000\\-800}$	$11400\substack{+30000\\-6000}$	$7600\substack{+19000\\-4000}$	2200
180110	07:34:34.95	715.7	38.8	73.0	28.0	4.5	420^{+20}_{-20}	3200^{+150}_{-150}	$23900\substack{+1100\\-1100}$	$16000\substack{+800\\-800}$	3350 ⁱ
											or
											6500 ^j
180128.0	00:59:37.97	441.4	31.5	45.0	17.3	2.9	51^{+2}_{-2}	380^{+15}_{-15}	2900^{+110}_{-110}	1940^{+80}_{-80}	$\operatorname{GL}^{\mathbf{k}}$
180128.2	04:53:26.80	495.9	41.0	50.6	19.40	2.3	66^{+4}_{-4}	500^{+30}_{-30}	3800^{+230}_{-230}	2500^{+150}_{-150}	SL ^k
180130	04:55:29.99	343.5	39.0	34.90	13.35	6.0	95^{+3}_{-3}	720^{+20}_{-20}	5400^{+170}_{-170}	3600^{+110}_{-110}	SL^k
180315	05:05:30.99	479.0	101.7	48.66	18.63	2.4	56^{+4}_{-4}	420^{+30}_{-30}	3200^{+230}_{-230}	2100^{+150}_{-150}	SL ^k
180324	09:31:46.70	431.0	64.0	43.79	16.75	4.3	71^{+3}_{-3}	540^{+20}_{-20}	4000^{+170}_{-170}	2700^{+110}_{-110}	450 ⁱ

Pulse broadening alone cannot explain the nondetections — fluence preserved under scattering

There must be a spectral turnover above 200 MHz

Of the three most likely spectral break mechanisms: Low DM of 171020 makes it hard to explain away with free-free absorption

- Free-free? If you suppose ALL of DM_{EG} is in a shell:
 - Constrain thickness of absorbing medium of FRB171020 to $<\!\!0.03~(T_e/10^4~K)^{-1.35}$ pc
- Intrinsic spectral turnover?
- Magnification at ASKAP frequencies by lensing caustics or scintillation? — possible for individual events but not a large number (source counts arguments)

All but one CRAFT FRB shows a mottled appearance

Fine spectral structure in an UTMOST FRB at 843 MHz

W. Farah et al.

Spectral properties of FRBs

Fully-modulated diffractive scintillation model doesn't fit in detail

CRAR

Energetics Part II: distances

