Single dish antennas and phased arrays

Radio Astronomy School 2024

18-29 November

NCRA, Pune

Visweshwar Ram Marthi

Single dish radio telescopes

Green Bank

Lovell, Jodrell Bank

GMRT single dish

- Large collecting area (sensitivity)
- Fully steerable (sky coverage)
- Multiple observing bands (cost optimisation)
- Special applications (e.g. VLBI)

Effelsberg

Parkes

Signals and noise

- In radio astronomy, signals are also noise
- Noise of interest: signal vs unwanted signal: noise
- Increase signal strength and reduce noise: wait for sensitivity lecture
- Radio astronomical signals are very weak: $1 Jy = 10^{-26} Wm^{-2}Hz^{-1}$

Brightness :
$$B(\nu) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/k_BT} - 1}$$
 W m⁻² Hz⁻¹ sr⁻¹ (Planck's law)
For radio frequencies, $h\nu \ll k_BT$, so $B(\nu) \approx \frac{2h\nu^3}{c^2} \frac{k_BT}{h\nu} = \frac{2k_BT}{\lambda^2}$
Brightness temperature, $T_b(\nu) = B(\nu) \frac{\lambda^2}{2k_B}$

Signals to Noise ratio

Let a radio telescope have a gain G. Let the instantaneous RMS fluctuations in the output be T_{svs}

RMS Fluctuations can be reduced: $\frac{I_{sys}}{\sqrt{\Delta v \tau}}$ For a source with brightness S (Jy), $T_A = GS$

Signal-to-noise, $S/N = \frac{GS}{T_{\rm sys}/\sqrt{\Delta\nu\tau}} = \frac{GS\sqrt{\Delta\nu\tau}}{T_{\rm sys}}$

S/N is usually a number. If S/N > threshold, the source is detected. Increasing integration time and/or bandwidth improves S/N

$$T_{\rm sys} = \frac{\text{Total power referred to receiver is}}{k_B}$$

where $T_{\rm sys} = T_{\rm sys} + T_{\rm rec} + T_{\rm spill} + 7$

Effective area, $A_e =$

Antenna works better in some directions, so A_e is a function of angle: $A_e(\theta, \phi)$

$$P(\theta, \phi) = 10 \log_{10} \left(\frac{A_e(\theta, \phi)}{A_e^{\max}} \right) dB$$

Measured brightness and temperature

Brightness measured at antenna terminals $W(\theta', \phi') = \frac{1}{2} \left[B(\theta, \phi) A_e(\theta - \theta', \phi - \phi') \sin\theta \, d\theta \, d\phi \right]$

Antenna temperature corresponding to the brightness distribution $T_A(\theta', \phi') = \frac{A_e^{\max}}{\lambda^2} \left[T_B(\theta, \phi) P(\theta - \theta', \phi - \phi') \sin\theta \, d\theta \, d\phi \right]$

Antenna temperature is a smoothed version of the sky brightness temperature

 $T_{R}(\theta, \phi)$ could be a single, infinitely peaked source or a collection of faint sources, producing the same $T_A(\theta, \phi)$. The lowest detectable $T_A(\theta, \phi)$ sets the confusion limit.

Beam pattern is related to the aperture size and shape Circular aperture < - > circularly symmetric beam pattern The relationship is a Fourier transform pair

- 1D rectangular <---> 1D sinc function
- 2D rectangular <—> 2D sinc function
- Circular <—> Bessel function: $\theta_{\text{HPBW}} \sim \frac{7}{D}$
- Gaussian <--- > Gaussian

Phased arrays

- Resolution: ability to distinguish directions Single dish resolution: HPBW Large HPBW increases confusion, reduces detectability of fainter signals Increasing resolution: decrease λ or increase D
- Increasing is very expensive, scales as $D^{2.7}$

Increase the number of antennas: Nantennas of aperture D, instead of one antenna of area ~ $(\sqrt{ND})^2$

These antennas can be made to work like a single antenna: phased array

Phased arrays: Linear arrays

 $E(\theta) = E_0 + E_0 e^{i\psi} + E_0 e^{i2\psi} + E_0 e^{i3\psi} + \dots + E_0 e^{i(n-1)\psi}$

Notice that this is a Fourier transform

When the array elements have the same phase, the array is said to be 'phased'.

The direction of the beam can be changed by introducing a phase gradient across the array.

Effectively, the beam can be 'steered' to a desired direction.

Phased arrays vs Incoherent arrays

