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What makes radio astronomy special?

Reveals invisible universe: many different cosmic objects emit
radio waves
Works day and night, through clouds and from the ground
Allows us to see through dust that blocks optical light
Many unique discoveries: pulsars, quasars, CMB, FRBs
requires synthesis of science and engineering skills
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The beginning - Karl Jansky 1933

Discovered radio emission from the centre of the Milky Way
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Karl Jansky’s radio telescope
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Grote Reber

carried out the first large radio survey 1941-43
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First map of the radio sky!
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Govind Swarup
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Kalyan array
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Ooty Radio telescope
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The Electromagnetic Spectrum

Radio: longest wavelengths (mm to km), lowest energies
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Why do astronomy at different wavelengths?

Different physical processes emit at different wavelengths
Temperature: hot objects emit thermal radiation at shorter
wavelengths
Acceleration: charged particles emit radio waves
Quantum transitions in ions, atoms and molecules: specific
wavelengths
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The optical sky

dominated by stars, ionised gas, dust (absorbtion)
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The radio sky at 408 MHz

dominated by pulsars, supernova remnants, star-forming regions, and
active galaxies - e.g. NGC 5128, Sagittarius A∗.
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The brightest radio sources

Cas A, Crab Neb, Vela - Supernova remnant; Orion A - star-forming region;
Sag A - Milky Way Centre; M87, Cen A, Cyg A - AGN
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Question

Bright radio sources are (usually) faint in the optical and vice versa.
Why?
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Typical stellar spectrum is blackbody!
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Why isn’t radio emission thermal?

Blackbody radiation at radio wavelengths too weak
Radio brightness requires T > 1012 K!
Most radio emission is non-thermal
Main mechanism: synchrotron radiation
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Synchrotron Radiation

Relavistic charged particles spiral in magnetic field
Acceleration causes emission
Power ∝ B2 γ2 (γ is the Lorentz factor)
Spectrum: power law, not blackbody
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Dominant physical mechanism for continuum radio
emission

radio emission due to synchrotron emission by relativistic charged
particles (electrons) in a magnetic field.
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Where would one expect to see continuum radio
emission?

What do you think?
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strong magnetic fields: pulsars
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Around luminous stars

from accelerated winds (charged particles) around luminous stars - star
forming regions. Could one detect this from the first stars?
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Epoch of reionization
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around recent supernovae - Cassiopeia A
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from supermassive black holes - quasars, blazars
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Accretion disk and radio jet around supermassive
black holes
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Hercules A - a radio galaxy
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from microquasars
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Faint radio sources....

We have only looked at the physical counterparts of the bright radio
sources. Faint radio sources are a zoo by themselves - Seyfert
galaxies, radio stars, extragalactic HII regions, the diffuse intracluster
medium, planets (e.g. Jupiter, even a few extrasolar planets), intelligent
life (which we have not found yet).
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A deep GMRT Radio image

GMRT proposal 20_006, PI: Wadadekar, rms 150 µJy
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Even deep radio images are quite sparse

Median stack of FIRST survey at 2e5 quasar positions
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Is this all?

Is there more to be done than continuum imaging?
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HI line emission/absorption

An electron orbiting a proton with parallel spins (pictured) has higher
energy than if the spins were anti-parallel. The photon emitted when
transitioning from a higher energy state to a lower energy one has a
frequency of about 1420 MHz (21 cm). Other lines of OH, H20 and CO
also studied.
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HI can be used to trace neutral hydrogen

and to measure its kinematics
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Types of Radio Emission

Continuum: Synchrotron, Free-free (thermal), Dust
Spectral lines: HI (21cm), CO, OH masers, Radio Recombination
lines.
Coherent emission: Pulsars, FRBs, Solar bursts
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Why did we build the GMRT?

GMRT is a marriage of the world’s two big radio telescopes, the
Very Large Array in New Mexico, and Arecibo in Puerto Rico,
with the advantages of both.

- Govind Swarup
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Arecibo dish in Puerto Rico
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Very Large Array, New Mexico
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Basic characteristics

30 fully steerable dishes of 45m diameter each.
longest baseline about 25 km; shortest about 100 m.
dishes are not solid; they have a mesh → low construction and
operational costs and less wind loading.
uGMRT has 4 operating bands: 1000 – 1450 MHz (updating
L-band), 550 – 900 MHz (replacing 610), 250 – 500 MHz (replacing
325), 120 – 250 MHz (replacing 150).
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The GMRT mesh
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The GMRT feed system
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Central Array
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The outer arms
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Single dish block diagram
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GMRT is an open sky international facility

proposals invited twice a year (2 cycles of 5 months each)
proposals reviewed by expert reviewers
completely open sky policy; time is alloted to the best rated
proposals by a time allocation committee
∼ 75 proposals received in each cycle.
Cycle 1 in 2002; Cycle 47 started in October 2024.
astronomers from 35 nations have used GMRT so far
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GMRT PIs of successful proposals come from these
35 countries
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Titles of some Cycle 40 GMRT proposals

Magnetic Fields in Star Formation
Nature of Repeating Fast Radio Bursts
HI Studies of High-z Radio Galaxies
Plasma Physics in Cluster Mergers
Radio Emission from Exoplanets
Radio-Optical Study of GW Events
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Titles of some Cycle 40 GMRT proposals

Radio Monitoring of X-ray Binaries in Our Galaxy
Deep Search for HI in Ultra-Diffuse Galaxies
Cosmic Ray Acceleration in Supernova Remnants
Low-frequency Study of Active Galactic Nuclei Jets
Mapping the Cosmic Web through Radio Observations
Radio Properties of Tidal Disruption Events
Technosignature Search from Nearby Star Systems

The versatility of the telescope is testified by the diverse proposal titles.
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Why are radio telescopes so large?

Resolution ∝ λ/D
Optical (500 nm): 1m telescope → 0.1 arcsec
Radio (21 cm): needs 400 km for same resolution!
Solution: interferometry
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Two element interferometer block diagram

November 2024 51 / 75



Double slit interference pattern
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Every baseline produces fringes
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Earth rotation aperture synthesis
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Signals from different antennas combined using
correlator
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How interferometry works - Van Cittert Zernike
Theorem

V (r1, r2) = ⟨E(r1)E∗(r2)⟩

V (r1, r2) = F{I(s)}
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MeerKAT - South African SKA Precursor

64 dishes of 13.5m diameter each in the Karoo region
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ASKAP - Australian SKA Precursor

36 dishes with revolutionary phased array feeds
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Challenges for the GMRT

RFI, RFI, RFI
competition from other telescopes like LOFAR, MWA, jVLA,
MeerKAT, ASKAP, FAST and eventually SKA
limited human resources
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Upgraded GMRT

N. Kanekar
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What we want radio telescopes to deliver?

sensitivity → more collecting area
sensitivity → Lower RFI - quiet site, short integrations.
sensitivity → low noise electronics

wider frequency coverage → dishes and aperture arrays.
high instantaneous bandwidth → wide-band feeds and electronics
better resolution → long baselines
low-brightness capability → short baselines
better UV coverage → long and short baselines
better spectral resolution → more channels ⇒ high data rates
faster survey speed → multi pixel feeds
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Constraints

Cost ⇒ international cooperation

Technology constraints: on manufacture, maintenance and
upgrade of dishes, feeds, front-end electronics, signal transport,
back-end electronics (incl. correlator), offline processing, archiving.
Computing: n2 correllations, CPU, Hard disks, RAM.
Electricity: GMRT electricity bill is about Rs. 1 crore per year
RFI prevention and removal: remote site logistics
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SKA Phase 1 Specifications

197 dishes (15m) in South Africa
512 low-frequency stations in Australia
65,000 m2 collecting area
Frequencies: 50 MHz – 15.4 GHz
Longest Baseline: 150km (mid), 65km (low)
Data: 0.7 Exabytes/year
Construction Cost: 1.3 billion euros
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SKA Phase 1
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Proposed SKA site in the Karoo, South Africa
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Proposed SKA site in Western Australia
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An international 12-country collaboration that includes
India
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SKA Construction Progress

Construction officially began in July 2021
Over 100 antenna foundations completed in South Africa by early
2024
First SKA prototype dish installed at Karoo site in 2023
Full array of 197 dishes planned for SKA-Mid Phase 1
Initial science operations expected 2027+
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SKA-Low Progress in Australia

512 stations planned for Phase 1
Each station with 256 dipole antennas
First prototype stations already operational
Site infrastructure development well advanced
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SKA Regional Centres

Network of 13+ interlinked data centers globally
Expected data rate: 100+ Pb/s of raw data
Science data products: 600 PB/year
Advanced ML/AI processing capabilities
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Fast Radio Bursts

Millisecond-duration radio flashes
Extragalactic origin confirmed
Some show periodic repetition
Over 1000 detected, many by CHIME
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Multi-messenger Astronomy

Radio follow-up of gravitational wave events
Gamma-ray burst afterglows
Neutrino source counterparts
Time-domain radio surveys crucial
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Modern Processing Techniques

Real-time calibration and imaging
Deep learning for source finding
GPU-accelerated processing
Cloud computing and distributed analysis
Automated RFI flagging
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Current Scientific Frontiers in Radio Astronomy

Cosmic Dawn (z > 6)
Magnetism across cosmic scales
Fast radio transients
Precision pulsar timing
Technosignatures (SETI)
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Questions and comments?

I will be happy to take your questions and comments.
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