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What is “imaging” ?

Why do we need to grid visibilities ?
How do we grid the visibilities ?

What are the implications of these
steps on the image ?



Output of the correlator !

A complex number : amplitude and phase

Recorded for every baseline, polarization,
frequency channel and sampling time

Each such entry, a visibility, makes up a point in
the ‘uv’-plane (sampling plane)

Visibility is a complex quantity, the magnitude of which has
the dimensions of spectral power flux density (Wm=Hz1).
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Figure 2-11. Coordinate system for specification of baseline parameters. X is the
direction of the meridian at the celestial equator, Y is toward the East, and Z toward
the North celestial pole.
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in the uv-plane trace /
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Figure 2—-12. Elliptical loci representing the projection of the baseline vector onto

2
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m— the (u,v) plane as a source is tracked across the sky. The lower curve corresponds to

. 5 AE a reversal of the direction of the baseline vector, and represents the points for which
E]H [] the visibility is the complex conjugate of that measured on the upper curve. The
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axial ratio of the ellipses is equal to sindg. For an East West baseline Lz = 0, and a
single ellipse is centered on the (u,v) origin.




Visibility of a source:

V= |V]e'v = / A(o)[(o)e~ 2P o /e 4
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For the coordinate system in the figure:
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Visibility of a source:

V= [V]e = / A(0)I(a)e~2mb /e 4
S

For the coordinate system in the figure:
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Inverse transform will give us the sky brightness |




Imaging: FT relationship

FT relationship exists between the sky brightness |, the primary beam pattern
A and the visibility V observed with an interferometer:

A(l,m)I(l,m) = / /V (w, v) e Ty doy

AVE e
2-D relationship holds while: | . D (s 50)' <1

w(l? +m?)| < 1

Observations are confined to a small region of the sky.

I



A(l,m)I(l,m) = / /V (u, v)e?™ T gy dy

/

Primary beam

The primary beam correction can be made at the final stage after
obtaining the image - thus we will drop this in the equations henceforth.
Let | itself denote the sky brightness modified by the primary beam.



_ / / V sz (ul4vm) du dv

Discrete measurements:

M depends on the number of
(ug,ve), k=1,...,M antennas in an array

For an array of 30 antennas

like the GMRT, M ?



_ / / V('u,, U)62wi(?55+ﬂfra) du dv

Image Visibilities

In practice you have the following:

= / / S(u, v) V' (u, v)e?™ @0 gy, do

/ N

“Dirty” image Samplmg Observed visibilities
function
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Imaging: two methods

— / / 8 u, ’U Vf u ’U) 2mi(ul+uvm) du dv

Direct Fourier Transform

Discrete Fourier Transform (using Fast Fourier Transform)




I — / / 8 u, ’U Vf u ’U) 2mi(ul+uvm) du dv

Direct Fourier Transform:
1 M

M Z 1/»‘(1““| Uk)eﬂm(mgﬂ—}—ﬂgm)
k=1

To be evaluated at every point of a NxN grid.
Number of multiplications needed to evaluate are ~2MN?

M and N are of the same order and thus the number of multiplications
needed are ~N*



Direct Vs Discrete Fourier Transform

Due to computational advantages, fast algorithms to find
the Discrete Fourier Transform (DFT) are most commonly

used in radio astronomy (algorithm for DFT: Fast Fourier
Transform - FFT).

Application of FFTs requires bringing data to a reqular grid
and then perform the transform.

Only in special cases where number of antenna elements
are few, the “direct Fourier Transform” is used.



Fast Fourier Transform
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Fast Fourier Transform

Requires the data to be on a reqgular grid.

Gridding

1/
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Grid shown is only illustrative.




Fast Fourier Transform

Requires the data to be on a reqgular grid.

|/
To bring the data to a regular grid T /f/f
requires ~ N operations. 1f W

(R

Further the FFT algorithms only > |
require ~ N? log,N operations. ]
(E. g. Cooley-Tukey algorithm) 10000
Compare this with N* for the DFT 20000 ]
case ]
In most common situations, FFTs are _ _ U (m)
used. Grid shown is only illustrative.



Gridding the visibilities

Motivated by the fact that we want to 20000
take full advantage of the FFT I
algorithms. |/
1DEIDlJ—_ ///
We want the data on a “grid” that is 1/ f{
uniformly spaced with a power of two E Ll ¥
points on each side. > C

-10000 —

-20000 —

-20000 -10000 ] 10000 20000

Grid shown is only illustrative -
grid size needs to be chosen
with due consideration of error
tolerence and computation



Zoom onto a single point in the uv-plane
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Zoom onto a single point in the uv-plane
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uy 1 How to achieve this ?

5 lllustration of gridding




Zoom onto a single point in the uv-plane
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Zoom onto a single point in the uv-plane
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Zoom onto a single point in the uv-plane
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4 Convolve (a) by (b)
B s Multiply (c) and (d)
o s = Output = Gridded visibility
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@ Effect of this on the image?

& .| Convolve (a) by (b) - multiplication with the
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Spacing of uv grid points is inversely proportional to the
field of view of the image, the comb function that is
applied in the image plane has a spacing proportional to
the field of view.

10

0.8

This can fold sources
outside the field of
view into the image.

0.6
04

0.2

Replace the box function 00
with a function that has

a FT pair with more

desirable properties ! D T T R W

Fig. 8.4 Box function and aliasing. The Fourier transform of a box function is the sinc function
(blue curve). Convolution in the uv domain by a box function is equivalent to multiplication in
the image domain by a taper with considerable sidelobes. Subsequent sampling in the uv domain
causes the sidelobes to show up in the main image (green curves)

=0.2




What is the optimal function ?

The optimal function is the one
that minimises the energy in
the sidelobes in the image
domain, under the constraint
that its “support” in the uv
domain is within a certain limit.

A
Energy in 2
o™ [ 1o
region/Total _Di
energy )
| i
-0

Slepian and Pollak 1961



Prolate Spheroidal Wave Function
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domain, under the constraint
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Fig, 8.7 Illustration of the aliasing induced by the gridding procedure, and its suppression by
oversampling the convolution function

Increased oversampling - sidelobes will be pushed farther
outwards and decreased in amplitude.




Synthesized beam
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Desirable characteristics: Low and uniform sidelobes; high resolution

No unique approach to get all of this. Choice according to the science

requirement.




Weighting: control the shape of the

Introduce a weighted sampling distribution:




Weighting: control the shape of the

M
S(u,’l)):zfﬁ(u—ukav_vk) B=g§S

apering function

Introduce a weighted sampling distribution:
v T =t
D, = density weighting
W(u,v) =Y RpTpDgd(u — ug, v — v) R, = reliability weight
k=1




Weighting: control the shape of the

M
S(u,v) =Y 8(u — up, v — vp) B=3s
k=1
Introduce a weighted sampling distribution:
v T = (’;apering fun:\tion
D, = density weighting
W(u,v) =Y RpTpDgd(u — ug, v — v) R, = reliability weight
k=1

Weighted visibilities

M
VI (u,v) = Zﬁ(u = g, v — vp) V' (ug, vg) VvV =wv’

k=1
M

VWiu,v) = Z Ry Ty Dyo(u — up, v — vg) V' (g, vg)
k=1



Weighting: control the shape of the

beam

M
T, = tapering function
W(u,v) = Z RyTi Do (u — up, v — v) D, = density weighting
k=1 R, = reliability weight
M
W !
VWV (u,0) =3 ReTpDid(u — ug, v — v) V' (g, vg)
k=1
If the sampling were a smooth function like a Gaussian ,
we would have no sidelobes. Briggs 1995_
However it is like a bunch of delta functions - often with (PhD thesis:
large gaps in between. detailed
treatment of
In an array: typically data points are dense in the inner weighting of
y: typlcaty Po! visibilities)

region of the uv-plane and are sparse outside - gives rise
to more weight to shorter spacings.



Weighting: control the shape of the

beam

M
T, = tapering function
W(u,v) = Z Ry Ty Do (v — ug,v — vg) D, = density weighting
k=1 R, = reliability weight
M
W !
VW (u,0) =Y RpTpDpd(u — g, v — vg) V' (g, vp)
k=1
Tapering weights are used to downweight the data at the Briggs 1995
outer_ edge._ (PhD thesis:
Density weights are used to lessen the effect of non- detailed
uniform density of sampling in the uv-plane. treatment of
| _ o weighting of
The weights are factored into components arbitrarily - visibilities)

only for convenience.



Weighting: control the shape of the

beam

M
T, = tapering function
W(u,v) = Z Ry Ty Do (v — ug,v — vg) Dkk = density weighting
k=1 R, = reliability weight
M
VWi u,v) = Z Ry T Dyo(u — up, v — vi) V' (ug, vg)
k=1

T, = tapering function, separable into u and v dependent parts.

T(u’ U) =1 (UJTQ(U) A Gaussian taper, for
example:

T(r) = exp(—12/20?)




Tapering
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The synthesized beam width will change depending on the choice of
the taper.



Tapering example
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Density weighting

Natural weights
D}'q- — ]_ IDUDU—:

Uniform weights
l —1DEIDEI—:

D, —
"Nk

-20000

N_(k) is the number of points within a
-20000 -10000 ] 10000 20000

symmetric region in (u,v) of width s U (m)
centered on k'™ point.

N_ is the number of points within a grid cell.




Density weighting

Natural weights
D}'q- — ]_ IDUDU—:

Uniform weights

l -10000 —_

D, —
"Nk

-20000

N_(k) is the number of points within a

0 10000 20000

symmetric region in (u,v) of width s T
centered on k'™ point.

Robust weighting: hybrid form of weighting: uses minimisation of
summed sidelobe power and thermal noise.



Density weights example
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Graphical representation
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Dirty image
if a direct FT
is computed

FT of the
convolution
function

Effect in the

image domain
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Effect in the

image domain

FT of
Resampling

Dirty image:

aliasing
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Dirty image:

aliasing

Divide by
the FT of
the
convolution
function

0.04

0.02

0.02 0.04

0

—0.02

Resampled
visibility
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This image is far from satisfactory
representation of the actual distribution: can

do better than this by deconvolution.



Imaging: FT of gridded visibilities
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570 Deconvplution !
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Summary

« Imaging: FT of the sampled visibilities

« FFT: fast computation but requires the visibilities on a
reqular grid

+ Visibility gridding: achieved typically by “convolution”

+ Synthesized beam: FT of the sampling. Can be
modified based on the choice of weights.

- Natural and uniform weights

« Tapering

« Graphical representation of the steps involved in the
process of obtaining an image using gridded
visibilities.
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