Sensitivity

Visweshwar Ram Marthi

Radio Astronomy School 2024

18-29 November

NCRA, Pune

Signals and noise: two-element interferometer

The voltages at the output terminals of the antennas are $v_i(t) = s_i(t) + n_i(t)$ and $v_j(t) = s_j(t) + n_j(t)$ Let us consider two antennas, *i* and *j* with equal gains G , but possibly different T_{sys} *The noise variances are* $\sigma_i^2 = \langle n_i^2(t) \rangle = T_{sys}^i$ and $\sigma_j^2 = \langle n_j^2 \rangle$ $\binom{2}{j}(t)$ = T_s^j sys Signal power spectral density is $\langle s_i^2(t) \rangle = \langle s_j^2(t) \rangle = GS$ $\langle r_{ij}$ $\langle t \rangle$ $\rangle = \langle v_i$ (*t*) *vj* $(t)\rangle = \langle (s_i$ $(t) + n_i$ (*t*))(*sj* $(t) + n_j$ $\vert(t)\rangle\rangle$ Consider an ordinary correlator: $r_{ij}(t) = v_i(t) v_j(t) = (s_i(t) + n_i(t))(s_j(t) + n_j(t))$ is the instantaneous output. $(t) + n_i$ (*t*))(*sj* $(t) + n_j$ (*t*)) Mean output of correlator (ensemble average):

We have assumed that the noise voltages are uncorrelated with each other, and the signals are uncorrelated with the noise (unbiased estimator of visibility). But to estimate the noise in $r_{ij}(t)$ we need the root mean square of itself, I.e. $\langle r_{ij}(t)r_{ij}(t)\rangle$

 $\langle r_{ij}(t)r_{ij}(t)\rangle = \langle (v_i + n_i)(v_j + n_j)(v_i + n_i)(v_j + n_j)\rangle$

$$
\sigma_j^2 = \langle n_j^2(t) \rangle = T_{\text{sys}}^j
$$

= GS
= $(s_i(t) + n_i(t))(s_j(t) + n_j(t))$ is the instantaneous outp

$$
\langle r_{ij}(t) \rangle = \langle v_i(t) v_j(t) \rangle = \langle (s_i(t) + n_i(t))(s_j(t) + n_j(t)) \rangle
$$

$$
= \langle s_i^2(t) \rangle = \langle s_j^2(t) \rangle = GS
$$

Variance of correlator output

The quantity $\langle r_{ij}(t)r_{ij}(t)\rangle = \langle (v_i+n_i)(v_j+n_j)(v_i+n_i)(v_j+n_j)\rangle$ is difficult to compute.

For gaussian signals, fourth moment $=$ \sum (product of second moments).

$$
\langle r_{ij}(t)r_{ij}(t)\rangle = 3(GS)^2 + (\sigma_i^2 + \sigma_j^2)GS + \sigma_i^2 \sigma_j^2
$$

= 2(GS)^2 + (GS)^2 + \sigma_i^2 GS + \sigma_j^2 GS + \sigma_i^2
= 2(GS)^2 + (GS + \sigma_i^2)(GS + \sigma_j^2)
= 2(GS)^2 + (GS + T_{sys}^i)(GS + T_{sys}^j)

 $Var(r_{ij}(t)) = \langle r_{ij}(t)r_{ij}(t) \rangle - \langle r_{ij}^2(t)r_{ij}(t) \rangle$ *ij* Variance of correlator output: $Var(r_{ij}(t)) = \langle r_{ij}(t)r_{ij}(t) \rangle - \langle r_{ij}^2 \rangle = (GS)^2 + (GS + T_{sys}^i)(GS + T_{sys}^j)$

 $\frac{2}{i} \sigma_j^2$

 $\langle r_{ij}(t) \rangle = \langle v_i(t) v_j(t) \rangle = \langle (s_i(t) + n_i(t)) (s_j(t) + n_j(t)) \rangle$ $= \langle s_i^2(t) \rangle = \langle s_j^2(t) \rangle = GS$

Time averaging vs ensemble averaging

denotes ensemble-averaging; in real life we do time-averaging. Time-averaged correlator output is: $\overline{r}_{ij}(t) =$ So, our second moment becomes $\overline{\sigma}_{ii}^2$ For stationary signals, $\langle \, . \, \rangle$ 1 *T* ∫ *t*+*T*/2 *t*−*T*/2 *rij* (*t*′) *dt*′ $\frac{2}{ij} = \langle \overline{r}_{ij} \overline{r}_{ij} \rangle - \langle \overline{r}_{ij} \rangle^2$ $\overline{\sigma}_x^2 =$ 1 *T* ∫ *T*/2 $-\frac{|T|}{T}$ $\left(1-\frac{|\tau|}{T}\right)$ $\left(\frac{1}{T}\right)$ $R_{xx}(\tau) d\tau$

For quasi-sinusoidal signals of BW $\Delta \nu$, coherence time $\sim 1/\Delta \nu$

For long integration, $T \gg 1/\Delta \nu$; so $\tau/T \ll 1$

$$
\overline{\sigma}_x^2 \simeq \frac{1}{T} \int_{-T/2}^{T/2} R_{xx}(\tau) d\tau \simeq \frac{1}{T} \int_{-\infty}^{\infty} R_{xx}(\tau) d\tau = \frac{1}{T} S_{xx}
$$

Autocorrelation function:

$$
R_{xx}(\tau) = \int_{-\infty}^{\infty} x(t) x(\tau - t)
$$

Fourier relation between autocorrelation function and power spectrum density: Parseval's theorem

$$
R_{xx}(\tau) \Longleftrightarrow 2\Delta\nu S_{xx}(\nu)
$$

Signal-to-noise ratio of a two-element interferometer

Noise variance:
$$
\overline{\sigma}_x^2 \simeq \frac{\sigma_x^2}{2T\Delta\nu}
$$
; $\sigma_{ij}^2(t) = 0$

Signal power: *GS*

 $(t) = (GS)^2 + (GS + T_{sys}^i)(GS + T_{sys}^j)$

Two distinct cases

 GS $\sqrt{2T\Delta\nu}$

Signal-to-noise ratio of an N-element interferometer

• Any two two-element interferometers with one common antenna : noise is uncorrelated

N-element interferometer = ${}^N C_2$ two-element interferometers, where ${}^N C_2$ two-element interferometers, where ${}^N C_2 =$ *N*(*N* − 1) 2

• Any two two-element interferometers with no common antenna : (also) noise is uncorrelated

-
-
- Noise from each two-element interferometer can be added in quadrature.

$$
S/N = \frac{\sqrt{N(l)}}{N}
$$

For *N* dishes, it would have been $N/\sqrt{N(N-1)}$ better.

GMRT: $N=30 \Rightarrow only 1.02 better$

N(*N* − 1)*T*Δ*νGS*

 $T_{\rm sys}$

Noise in the image plane

 $I(l,m) =$ 1 *M* ∑ *p* $w_p V_p e^{-i2\pi (l u_p + m v_p)}$

 $\langle I(l,m) I(l',m') \rangle =$ 1 *M*² ∑ ∑ *p q* $w_p w_q \langle V_p V_q^* \rangle e^{-i2\pi (l u_p + m v_p)} e^{i2\pi (l' u_q + m' v_q)}$

 $\langle I(l,m) I(l',m') \rangle =$ 1 M^2 ∑ *m* $\sigma_p^2 e^{-i2\pi((l-l')u_p + (m-m')v_p)} =$ $σ_p²$ *M*

