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Plan for the talk
• Re-cap of imaging, need for new/advanced algorithms

• Advances in algorithms for the current telescopes
– Algorithms for wide-field imaging/ Direction-dependent corrections

– Algorithms for wide-band imaging

• Non algorithmic issues to understand and keep in mind
– Computing complexity / computing resource requirements

– Understand the algorithmic needs of your scientific goal: Not all imaging needs to 
trigger the most advanced algorithms

– Use implementations that allow flexibility in algorithmic choices and combinations

• Next-gen instruments and the next-generation challenges
– SKA

– ngVLA

» 214 antennas, 1000Km baselines

» Fractional bandwidth: up to 60%

» Range of scales:  mas → 10s arcsec
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Telescope sensitivity

• Noise limit for imaging with interferometric radio 
telescopes

• Sensitivity improvements achieved by 

Noise ∝
T

sys

A
eff   T

Δ ν :Wide band receivers: >60% fractional bandwidth

ΔT : Long integration times: many hours -- months

A
eff

: More antennas: 30 -- many 100s

Long baselines: To beat confusion limit

10 – 100x improvement in sensitivity over the past decade!
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Sky at low frequencies: No. of sources

• PSF side-lobe at 1% level →  deconvolve sources >100μJy for 1μJy/beam 
RMS

• 104-5 sources per deg2  >10μJy @1.4GHz
– Source size distribution important at resolution < ~2”

• Implications for imaging
1. Wide-field imaging

2. HDR imaging: few X 100 mJy – 1 Jy source ~few sq. deg.

3. Deconvolution of crowded fields (same problem as deconvolution of extended emission)
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Sky at low frequencies: Confusion 
limit

1μJy/b

• σ
confusion

 ∝ ( ν-2.7/B2

max
) :  B

max
~100 Km at 200MHz for σ

confusion
 ~ 1μJy/beam

• Implications for imaging
1.Long baselines: B

max 
> 2-3 Km & DR > 104

2.Wide-field effects: W-term, PB effects, ionospheric effects 
3.Larger data volume

Wide-field, wide-band, high resolution, HDR imaging using large data 
volumes is a natural consequence of low frequency and high sensitivity

10 100 300 Km
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Sky at low frequencies: Confusion 
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max
~100 Km at 200MHz for σ

confusion
 ~ 1μJy/beam

• Implications for imaging
1.Long baselines: B

max 
> 2-3 Km & DR > 104

2.Wide-field effects: W-term, PB effects, ionospheric effects 
3.Larger data volume

Wide-field, wide-band, high resolution, HDR imaging using large data 
volumes is a natural consequence of low frequency and high sensitivity

10 100 300 Km

Point source sensitivity 1-sigma 12hr. Synthesis:
    VLA                    EVLA                   Factor
    10uJy                  1uJy                       10

Data volume:
   ~1GB             100-1000GB                102 - 4 
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Wide-band implies Wide-field imaging

 ● EVLA @L-Band
● BW=600 MHz
  (1.2 – 1.8 GHz)
 

● Algorithmic 
 Challenge:
   - Time-varying
     direction-dependent
     gains

   - Wide-band effects

   - Extended
     emission with
     superimposed
     compact 
     emission   

   - Full Stokes
     + Mosaicking
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Imaging challenges

• Challenges in imaging at low frequencies

1.Wide-field imaging

Account for Direction Dependent (DD) effects

PB: Time, frequency and poln. dependence 

W-term

2.Wide-band imaging

All of the above plus...

...frequency dependence of the sky brightness

 

1. Sky brightness stronger and complex: Multi-Scale deconvolution

2. Ionospheric effects

Requires DD solvers: An algorithmic & computing challenge in 
itself
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Direction Dependent (DD) Effects

• DI Calibrated  ME

• Removing the effects of the DD terms cannot be separated 
from imaging

• Fastest varying term on the RHS determines the averaging scale (time and 
frequency)

• Imaging equation:

V
ij

DI−Cal
= W

ij∫ P
ij
 s , ,t  I  s , e

 s.b
ij d s

Data DI 
Calibration

Sky GeometryDD Term
Instrumental
Ionospheric

I
continuum

Dirty
=∫∫PSF  , t ∗[ PB , t ×I True ] d  dt
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Direction Dependent (DD) Effects

• DI Calibrated  ME

 

• Standard Imaging assumes: 

• PB is independent of time, frequency and polarization

• Sky brightness is independent of frequency

• Geometry is 2D

V
ij

DI−Cal
= W

ij∫ P
ij
 s , ,t  I  s , e

 s.b
ij d s

Data DI 
Calibration

Sky GeometryDD Term
Instrumental
Ionospheric
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DD Corrections: Projection Algorithms

• Can we find an operator X which when applied to the above 
equation, projects-out the undesirable effects of A?

• Then

V
ij

DI−Cal
= W

ij∫ P
ij
 s , ,t  I True

 s , e
 s.b

ij d s

V
ij

DI−Cal
= A

ij
 , t ∗V True

 , t 

X
ij

V
ij

DI−Cal
= X

ij
A

ij
V True

such that X
ij

A
ij

= 1

F X
ij

V
ij

DI −Cal
= F V True

= I True

Understand the Physics of the problem; use mathematical techniques to find a solution
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Time dependent terms

• Antenna PB (                     )

– Time dependence

The P
ij
 s , , t 



14S. Bhatnagar:  NCRA RAS, Aug. 30th 2019

Polarization dependent terms

• Antenna PB (                     )

– Polarization dependence

The P
ij
 s , , t 

Stokes-Q, -U leakage
~3-5% in the main-lobe
Higher in the first side-lobe

Stokes-V leakage
~3-4% in the main-lobe
Higher in the first side-lobe

Stokes-I

Stokes-Q, -U leakage
~3-5% in the main-lobe
Higher in the first side-lobe

Stokes-Q

Stokes-U Stokes-V
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Time+Polarization dependence

Errors due to PB
Squint + Rotation + Pointing errors

Purely instrumental
Stokes-V artifacts

Due to time-variable PB

Stokes-I

Stokes-V
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PB Polarization Effects

● L-Band VLA imaging
● DR ~ 104 

A-Projection

Stokes-V Images 
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Instrumental frequency dependence

• Continuum imaging

• Antenna PB (                     )

– Frequency dependence

I continuum
=∫P

ij
 s , , t  I  s , d 

The P
ij
 s , , t 

PB Freq. dependence
(blue curve)
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Wide-Band AW-Projection

• Correct for PB effects + W-term

– Polarization: Squint + in-beam polarization

– Time variability: Rotation with Parallactic Angle

WB A-Projection Effective PB

PB Frequency dependence
(blue curve)
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WB AW-Projection + MT-MFS
● Simultaneously account for the PB effects and frequency dependence of the sky

● PB effects corrected by WB A-Projection
● PB-corrected image used in MT-MFS for model the frequency dependence 

of the sky brightness

MFS+SI

MT-MFS+
A-Projection

MT-MFS+
WB A-Projection

MT-MFS+SI

Ap.J., 2013
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Instrumental frequency dependence

Pulsar Sp. Ndx -3.0

Artificially steep
Spectral Index



21S. Bhatnagar:  NCRA RAS, Aug. 30th 2019

Non co-planar baselines: W-Term

• Imaging

• The geometric term (non co-planar baselines)
– Transform is no more 2D Fourier Transform

V
ij

DI−Cal
= W

ij∫ P
ij
 s , ,t  I  s , e

 s.b
ij d s

Data DI 
Calibration

Sky GeometryDD Term
Instrumental
Ionospheric

Before correction After correction
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Wide-Band AW-Projection + MT-MFS

A&A, 2008, ApJ, 2013

Pulsar Sp. Ndx -3.0 Pulsar Sp. Ndx -0.29

● Intensity weight Spectral Index Map
● Wide-field Spectral Index maps comes out in the wash correctly

Artificially steep (due to PB)
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Wide-band Mosaic Imaging + SD

● Simultaneous corrections
 for instrumental effects+
 Frequency Dependence 
 of the Sky

●  WB AW-Projection + 
   MS-MFS + Mosaic  

● Wide-band
 100-pointing mosaic

● EVLA + GBT
 Feathering (existing
 algorithm)

● In progress:
   - Mosaic spectral
      Index mapping

● Parallel execution /
 Optimization /

● Numerical tests
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Status-1: In production or commission 
stage

• W-Term correction:  Dominant DD term at low frequencies
– Facted-imaging, W-Projection, W-Stacking

• Extended emission
– MS-Clean, Asp-Clean, various variants

• Frequency dependence of the sky brightness
– MS-MFS, MT-MFS

• PB corrections
– A-Projection: Time and polarization dependence

– WB A-Projection: Also frequency dependence

• Recently Commissioned:

– W-Term + WB A-Projection + MT-MFS
» Simultaneously account for instrumental and sky terms

– Wide-band Mosaic
» All of the above for mosaic imaging (work in progress)
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Status-2: In active development
• Imaging with heterogeneous arrays

– Antenna-to-antenna variations: ALMA, ngVLA (,SKA?)

– Pointing errors (VLASS 40-pointing mosaic imaging case)

Before pointing corrections After pointing corrections

Effect of heterogeneous pointing errors
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Status-2: In active development
• Full-polarization imaging

– Extend PB correction to full polarization

– RM Synthesis at the sensitivity and band-width now available

• Parallelization
– Many projects takes weeks of computing for imaging

– Cluster computing: High Performance Computing (HPC), High Throughput 
Computing (HTC)

– CPUs, GP-GPUs, FPGAs,...

• Ionospheric phase corrections
– Corrections:  Via A-Projection for correction during imaging

– Ionospheric phase screen solvers:  Various “peeling” based solvers

» More generic solvers
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Computing Cost
• Imaging + deconvolution accounts for >90% of the computing cost in 

a “typical” end-to-end processing

    DataArchive → Flagging/Calibration → Imaging-Deconv. → ImageArchive

• Computing Scaling

– Computing costs: N2
support

 x N
vis        

: Dominated by Projection

– Memory footprint: N2
Scales 

+N2
Terms    

: Dominated by MT-MFS

• Imaging : Pleasantly Parallel (a.k.a “Embarrassingly parallel”) 
– Scatter-Gather Paradigm on the Cluster scale

• Optimal utilization of the computing multi-core CPUs is harder
– Multiple process per node:  Limited by total memory footprint

– Single multi-threaded process:  Algorithmically challenging 
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Sci. S/W Complexity: High Level 
Description

• High Computational Intensity (FLOP per byte)
– O(10 2– 3) FLOP per data point

– Number of data points: O(1012 – 15)

• Imaging is embarrassingly parallel
– SAMD parallelization architecture measures high efficiency

– In-coherent gather is OK

ID=∑ p
FXG pV p      or     F∑ p

XG pV p      or     FX∑ p
G pV p

 

Node s/w complexity
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Challenges
• Algorithms

– Wide-band RM Synthesis

– DD Solvers: Ionospheric screen

– Efficient multi-scale algorithms for both imaging & deconvolution

• High Scale-dynamic range imaging: 

– Ratio of max. to min. scale: O(105)!
» Imaging with the EVLA A + B + C + D-array

» ALMA long baselines + Core

» ngVLA in general

 

• Computing
– Optimal use of available computing resources

– Use of (massively) parallel hardware

» Multi-core CPUs, GP-GPUs

– Memory footprint

– Data I/O: SKA-, ngVLA-class problem

» Algorithms are fundamentally iterative
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Challenges

• Rate of convergence: Crucial for ngVLA-scale problems
– Optimal algorithms, Optimal utilization

• ngVLA: 
– (Very) high data rates

– Pipeline processing

– Computing, algorithmic, hardware, software solutions to reduce computing cost

• SKA sensitivity → wider-field imaging, expose more error terms
– Instrumental terms: Measure vs Model vs Solve

• We collect enormous amounts of data → more  information
– Are we utilizing the available information optimally?

» In terms of algorithm design

» In terms of extracting astrophysical information
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Computing Cost

Images corrected for instrumental  artifacts
Model the measurements
(telescope, ionosphere, etc.)

Projection algorithms

Model the sky brightness distribution

Image modeling (a.k.a. “deconvolution”)

Re-sampling: Uses all data
Data

Model Data

Images

Model Image

Gridding + FFT

Deconvolution
(CS-, MS-, MS-MFS)

Only images

IFFT + De-gridding

Subtract

C
o

m
p

u
ti

n
g

 C
o

st

Standard Imaging

Standard deconvolution
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Computing Cost
C
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o
st

Standard Imaging

Advanced deconvolution: MS, MT-MFS, MS-MFS

Images corrected for instrumental  artifacts
Model the measurements
(telescope, ionosphere, etc.)

Projection algorithms

Model the sky brightness distribution

Image modeling (a.k.a. “deconvolution”)

Re-sampling: Uses all data
Data

Model Data

Images

Model Image

Gridding + FFT

Deconvolution
(CS-, MS-, MS-MFS)

Only images

IFFT + De-gridding

Subtract
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Computing Cost
C
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Advanced Imaging: W-, A-, AW-Proj., Heterogeneous, WB

Standard deconvolution

Images corrected for instrumental  artifacts
Model the measurements
(telescope, ionosphere, etc.)

Projection algorithms

Model the sky brightness distribution

Image modeling (a.k.a. “deconvolution”)

Re-sampling: Uses all data
Data

Model Data

Images

Model Image

Gridding + FFT

Deconvolution
(CS-, MS-, MS-MFS)

Only images

IFFT + De-gridding

Subtract
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Advanced Imaging: W-, A-, AW-Proj., Heterogeneous, WB

Advanced deconvolution: MS-, MT-MFS, MS-MFS

Images corrected for instrumental  artifacts
Model the measurements
(telescope, ionosphere, etc.)

Projection algorithms

Model the sky brightness distribution

Image modeling (a.k.a. “deconvolution”)

Re-sampling: Uses all data
Data

Model Data

Images

Model Image

Gridding + FFT

Deconvolution
(CS-, MS-, MS-MFS)

Only images

IFFT + De-gridding

Subtract
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Challenges

Large data volume → 
Computing Bottleneck

Routine HDR imaging

DD Corrections

Routine HDR imaging

DD Solvers

Telescope design
(antenna design costs)

Computing costs

Existence of large computing resources does ensure algorithms will converge!
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Imaging with the EVLA @ L-Band

Single pointing, wide-band image

Wide-band 100 pointing mosaic+Single Dish
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