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Outline

● Why pipelines ?
● AIPS based pipelines 
● Writing your own AIPS pipeline
● CAPTURE : CASA Pipeline-cum-Toolkit for 

UGMRT Data Reduction
● Writing tasks in CASA, creating your own 

pipelines



  

Why pipelines ?

● Data reduction is a lengthy process, many parts are similar across 
datasets: automation !

● Increases reproducibility of the results
● Reduces human errors
● Data sizes are large or going to get larger: easy to port to servers and 

run remotely.
● Ease of testing one aspect at a time for complex algorithms like “tclean”
● A step towards “open science”: 

https://zenodo.org/record/2631868#.XWiX-JzhVUQ

“Reproducibility and open science in the SKA era” by Rachel Ainsworth

https://zenodo.org/record/2631868#.XWiX-JzhVUQ


  

● RUNFILES
● Commands can be put into a text file and the 

text file can be provided to AIPS
● Quirks: needs to have extension of AIPS userid 

in e-hex format 
● Any programming: e. g. for loops, condition 

testing etc. in “Parseltongue”

AIPS



  

● SPAM: Source Peeling and Atmospheric 
Modeling  (Intema et al 2009)

● http://www.intema.nl/doku.php?id=huibintemas
pam

AIPS

http://www.intema.nl/doku.php?id=huibintemaspam
http://www.intema.nl/doku.php?id=huibintemaspam


  

● Writing tasks and pipelines: Python
● Writing a task in CASA:

XML file : sets the input interface

taskname.py : actual code
● Use of CASA tasks and toolkit functionalities
● Excellent documentation for learning.

CASA



  

● Writing tasks and pipelines: Python

● Pipeline: 

- automating the process that you do 
interactively at the terminal

- automation of decision making is crucial ! 

CASA



 

● Automation of routine processes: conversion from lta to MS, 

flagging of bad antennas, standard calibration, splitting target 

source data.

● Efficient elimination of RFI while not overdoing it.

● Automated self-calibration but still giving enough freedom to the 

to choose the strategy.

● Easily tailored for special needs: for e. g. for online RFI excision 

system testing: can deal with only calibrator data, half or one 

fourth of an array of data

CAPTURE 

CASA Pipeline-cum-Toolkit for UGMRT Data 
Reduction



  

Visibilities
Flagging, 

calibration, 
Imaging and 

self-calibration

Image/s

Python 2.7 and Common Astronomy Software Applications 

(CASA, McMullin, J. P. et al 2007)

Legacy GMRT 
OR uGMRT

CAPTURE https://github.com/ruta-k/uGMRT-pipeline



  

CAPTURE

Multi-source data

- Initial flagging and calibration

- Further flagging and final calibration

Working with calibrated target source data

- flagging

- averaging in frequency

- imaging and self-calibration



  

Dependencies:
If starting from lta file: listscan, gvfits 
Calibration part: vla-cals.list  

Output of listobs in a .list file

Initial flagging and calibration

MS file contains:
Primary calibrator/s
Secondary calibrator/s
Target/s: source 
names not in the vla 
list of calibrators



  

Dependencies:
If starting from lta file: listscan, gvfits 
Calibration part: vla-cals.list  

MS file contains:
Primary calibrator/s
Secondary calibrator/s
Target/s: source 
names not in the vla 
list of calibrators

Gain tables: K, G
Bandpass table
Fluxscale table

Non-working antennas, RFI 
prone frequency channels,
Quack, initial clip and tfcrop

Output of listobs in a .list file

Initial flagging and calibration



  

Tfcrop and rflag: 
differently for Central sq. 
baselines and other 
baselines

Can choose to stop at 
intermediate steps for 
manual examination of 
data.

A single source MS 
file for each target in 
the data will be 
created.

Further flagging and calibration



  

Tfcrop and rflag: 
differently for Central sq. 
baselines and other 
baselines

Working with calibrated target data



  

Imaging and self-calibration:

● Option to make a dirty image – can examine and decide self-calibration 

strategy.

● Phase-only and amp and phase self-calibration iterations given by the 

user carried out.

● Flagging on residual data column is carried out in the self-calibration 

loop.

Working with calibrated target data



  



  

Initial set-up

Inputs

Functions

Applications

These need to be modified 
according to the type of the 
data that are to be analysed.

Modifications only for any 
special requirements.

The pipeline is a single python program.

Structure of the pipeline program



  

###### SET THE STAGE FOR DATA ANALYSIS #############################

fromlta = True                             # If starting from lta file set it True.

gvbinpath = ['./listscan','./gvfits'] # set the path to listscan and gvfits if fromlta==True.

fromraw = True                           # True if starting from FITS data. Otherwise keep it False.

fromms = True                            # True If working with multi-source MS file.

findbadants = True                     # find bad antennas when True

flagbadants= True                      # find and flag bad antennas when True

findbadchans = True                  # find bad channels within known RFI affected freq ranges when True

flagbadfreq= True                      # find and flag bad channels within known RFI affected freq ranges when True

myflaginit = True                        # True to flag first channel, quack, initial clips

doinitcal = True                          # True to calibrate data

mydoflag = True                        # True to flag on the calibrated data

redocal = True                           # True to redo calibration - recommended

dosplit = True                            # True to split calibrated data on target source

mysplitflag = True                     # True to flag on the target source

dosplitavg = True                      # True to average channels 

doflagavg = True                       # True to flag on the channel averaged file 

makedirty = True                       # True only if you want to make a dirty image of your target source

doselfcal = True                        # True if selfcal loop should be run

usetclean = True                       # True if you want to use tclean (recommended); False will use clean.

Initial set-up: initial flagging and calibration



  

###### SET THE STAGE FOR DATA ANALYSIS #############################

fromlta = True                           # If starting from lta file set it True.

gvbinpath = ['./listscan','./gvfits'] # set the paths to listscan, gvfits

fromraw = True                         # True if starting from FITS data. 

fromms = True                          #True if working with multi-source MS

Initial set-up: input files



  

###### SET THE STAGE FOR DATA ANALYSIS #############################

fromlta = True                             # If starting from lta file set it True.

gvbinpath = ['./listscan','./gvfits'] # set the path to listscan and gvfits if fromlta==True.

fromraw = True                           # True if starting from FITS data. Otherwise keep it False.

fromms = True                            # True If working with multi-source MS file.

findbadants = True                     # find bad antennas when True

flagbadants= True                      # find and flag bad antennas when True

findbadchans = True                  # find bad channels within known RFI affected freq ranges when True

flagbadfreq= True                      # find and flag bad channels within known RFI affected freq ranges when True

myflaginit = True                        # True to flag first channel, quack, initial clips

doinitcal = True                          # True to calibrate data

mydoflag = True                        # True to flag on the calibrated data

redocal = True                           # True to redo calibration - recommended

dosplit = True                            # True to split calibrated data on target source

mysplitflag = True                     # True to flag on the target source

dosplitavg = True                      # True to average channels 

doflagavg = True                       # True to flag on the channel averaged file 

makedirty = True                       # True only if you want to make a dirty image of your target source

doselfcal = True                        # True if selfcal loop should be run

usetclean = True                       # True if you want to use tclean (recommended); False will use clean.

Initial set-up: initial flagging and calibration



  

###### SET THE STAGE FOR DATA ANALYSIS #############################

findbadants = True                     # find bad antennas when True

flagbadants= True                      # find and flag bad antennas 
when True

findbadchans = True                  # find bad channels within 
known RFI affected freq ranges when True

flagbadfreq= True                      # find and flag bad channels 
within known RFI affected freq ranges when True

myflaginit = True                        # True to flag first channel, 
quack, initial clips

doinitcal = True                          # True to calibrate data

Initial set-up: initial flagging and calibration



  

###### SET THE STAGE FOR DATA ANALYSIS #############################

fromlta = True                             # If starting from lta file set it True.

gvbinpath = ['./listscan','./gvfits'] # set the path to listscan and gvfits if fromlta==True.

fromraw = True                           # True if starting from FITS data. Otherwise keep it False.

fromms = True                            # True If working with multi-source MS file.

findbadants = True                     # find bad antennas when True

flagbadants= True                      # find and flag bad antennas when True

findbadchans = True                  # find bad channels within known RFI affected freq ranges when True

flagbadfreq= True                      # find and flag bad channels within known RFI affected freq ranges when True

myflaginit = True                        # True to flag first channel, quack, initial clips

doinitcal = True                          # True to calibrate data

mydoflag = True                        # True to flag on the calibrated data

redocal = True                           # True to redo calibration - recommended

dosplit = True                            # True to split calibrated data on target source

mysplitflag = True                     # True to flag on the target source

dosplitavg = True                      # True to average channels 

doflagavg = True                       # True to flag on the channel averaged file 

makedirty = True                       # True only if you want to make a dirty image of your target source

doselfcal = True                        # True if selfcal loop should be run

usetclean = True                       # True if you want to use tclean (recommended); False will use clean.

Initial set-up: flagging, calibration and split



  

###### SET THE STAGE FOR DATA ANALYSIS #############################

mydoflag = True                 # True: flags on the calibrated data

redocal = True                    # True to redo calibration 

dosplit = True                    # True to split calibrated target data

Initial set-up: flagging, calibration and split



  

###### SET THE STAGE FOR DATA ANALYSIS #############################

fromlta = True                             # If starting from lta file set it True.

gvbinpath = ['./listscan','./gvfits'] # set the path to listscan and gvfits if fromlta==True.

fromraw = True                           # True if starting from FITS data. Otherwise keep it False.

fromms = True                            # True If working with multi-source MS file.

findbadants = True                     # find bad antennas when True

flagbadants= True                      # find and flag bad antennas when True

findbadchans = True                  # find bad channels within known RFI affected freq ranges when True

flagbadfreq= True                      # find and flag bad channels within known RFI affected freq ranges when True

myflaginit = True                        # True to flag first channel, quack, initial clips

doinitcal = True                          # True to calibrate data

mydoflag = True                        # True to flag on the calibrated data

redocal = True                           # True to redo calibration - recommended

dosplit = True                            # True to split calibrated data on target source

mysplitflag = True                     # True to flag on the target source

dosplitavg = True                      # True to average channels 

doflagavg = True                       # True to flag on the channel averaged file 

makedirty = True                       # True only if you want to make a dirty image of your target source

doselfcal = True                        # True if selfcal loop should be run

usetclean = True                       # True if you want to use tclean (recommended); False will use clean.

Initial set-up: frequency avg, flagging



  

###### SET THE STAGE FOR DATA ANALYSIS #############################

mysplitflag = True              # True to flag on the target source

dosplitavg = True               # True to average channels 

doflagavg = True                # True to flag on the channel 

averaged file 

Initial set-up: frequency avg, flagging



  

###### SET THE STAGE FOR DATA ANALYSIS #############################

makedirty = True                       # True only if you want to make a dirty 

image of your target source

doselfcal = True                        # True if selfcal loop should be run

usetclean = True                       # True if you want to use tclean 

(recommended); False will use clean.

Initial set-up: imaging and self-calibration



  

###### INPUTS ######################################################

ltafile =''                         # lta file

rawfile = ''                    # TEST.FITS or provide the name of the FITS file if you already have; 

myfile1 =''                     # MS file   (REQUIRED if starting from multi-source MS file)

mysplitfile =''                # target source file name (split file)

mysplitavgfile = ''         # target source file name after averaging; REQUIRED if starting from this file

# Inputs for flagging and calibration

myquackinterval = 10.0    # time in s to flag at the beginning of a scan and at the end of the scan.

clipfluxcal =[0.0,60.0]       # in Jy. typically twice the expected flux; only to remove high points

clipphasecal =[0.0,60.0]   # in Jy. typically twice the expected flux; only to remove high points

cliptarget =[0.0,30.0]        # in Jy. typically four times the expected flux; only to remove high points

clipresid=[0.0,10.0]          # in Jy. 10 times the rms for single channel and single baseline

myrefant = 'C00'              # choose a reference antenna - make sure it is one of the working antennas.

uvracal =''                        # Leave it to ''; will apply it to all the calibrators in the current version of the pipeline

# Inputs for post split averaging of channels

mywidth2 = 10                # number of channels to average - choose aptly to avoid bandwidth smearing.

# Inputs for imaging and self-calibration : You will need to change relevant advanced controls if you change the values here.

scaloops = 8                  # Total number of self-cal loops (including both phase-only and amp-ph)

mypcaloops = 4             # Number of p-only selfcal loops; should be <= scaloops. The remaning loops will and a&p self-cal.

mythresholds = 0.1        # in mJy. Global flux threshold – starting threshold – will change with iteration.

mycell = ['2.0arcsec']     # Set the cellsize for imaging.

myimsize = [12000]      # Set the size of the image in pixel units. Should cover the primary beam.

Inputs



  

# Further control on imaging and self-calibration

mynterms = 2      # nterms used in tclean; not tested for nterms >2.

mywproj2 = -1     # Number of wprojection planes- leave it to -1 so that it is determined 

internally in tclean

# Solint used for self-cal: provide solints for each self-cal iteration : edit according to the 

number of self-cal loops you 

# have chosen. Has to be of the same length as nscaloops

mysolint2 = ['8.0min','4.0min','2.0min','1.0min','8.0min','4.0min','2.0min','1.0min']    

uvrascal=''          # uvrange cutoff used in self-calibration – will use in the task gaincal.

More Inputs



  

Initial set-up

Inputs

Functions

Applications

These need to be modified 
according to the type of the 
data that are to be analysed.

The pipeline is a single python program.

Structure of the pipeline program

A list of python function calling 
CASA tool-kit and tasks

Main processing block: runs the 
functions with the inputs given 
by the user.



  

● Works in CASA versions 5.0 and above. Likely also in earlier ones but not tested.

● Copy all the files from github to the directory from which you are going to run the 

pipeline.

● In the python program file (.py), make the “Initial set-up” - set the True or False states 

of the parameters and then provide the “Inputs”.

Save and run the file using:

casa -c capture-pipeline-V0.py

Or at the CASA prompt using:

execfile(“capture-pipeline-V0.py”)

How to run the pipeline ?



  

Images obtained using the pipeline

Pipeline works for:

Legacy GMRT : All bands except data taken in dual frequency 
mode.

Upgraded GMRT: Bands 3, 4 and 5

For Band 2: it works after editing the choice of channels to 
accommodate the notch filter.

Works on sub-array data as well.

Works when flux and phase calibrator are the same.



  
Peak 0.17 Jy/b
Rms 0.048 mJy/b



  
Peak 0.17 Jy/b
Rms 0.048 mJy/b



  
Peak 0.06 Jy/b
RMS 0.028 mJy/b



  
Peak 0.08 Jy/b
RMS 0.048 mJy/b



  

Band 4
Peak 0.045
RMS 0.01 mJy/b



  

Band 4
Peak 0.045 Jy/b
RMS 0.01 mJy/b



  

Pipeline run duration

Sample numbers:

uGMRT P-band data with on source time of 2.5 hours, 
cellsize = 1 arcsec, Imsize = 10000 pixels.
 
Time taken from split file to final self-calibrated image: 
32GB RAM, 8 processors, 3.4 GHz :  3.6 days

For a legacy dataset ~ 6 hr duration:
End-to-end ~3 days.

For uGMRT dataset ~ 9 hr duration, P-band:
End-to-end ~6 days on 128 GB, 24 cores (not an exclusive run)

Memory issues on 32GB machine if imagesize is large ~12000 or so.



  

CAPTURE: caveats

● Multiple targets: Two step run needed. First step to create calibrated split files 

for each source and then a separate imaging run for each target is needed.

● If a self-cal run is interrupted, the full imaging run needs to be carried out 

again. 

● For a different choice of parameters in tclean, the python function “mytclean” 

can be edited appropriately and used (with caution!).

● The pipeline is not tested for nterms > 2.

● Full Stokes data reduction is possible but polarization calibration is not part of 

it as yet.

● Primary beam correction is a separate task to be run outside the pipeline.

https://github.com/ruta-k/uGMRTprimarybeam



  

Summary
● Pipelines are essential: reproducibility, automation, data sizes, 

working on remote servers – in general makes life easier !

● Need to be used with caution as at low frequencies each field 

needs a tailored strategy to obtain the best possible image for 

the intended science.

● CAPTURE available for uGMRT continuum data reduction - can 

be easily tailored for special needs.

● Writing new CASA tasks, pipelines made easy by Python

● A move towards “open science”.
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