

Pipelines for radio interferometric data reduction

Ruta Kale
National Centre for Radio Astrophysics,
Tata Institute of Fundamental Research,

Pune, India

Radio Astronomy School 2019, 30th August 2019

Outline

● Why pipelines ?
● AIPS based pipelines
● Writing your own AIPS pipeline
● CAPTURE : CASA Pipeline-cum-Toolkit for

UGMRT Data Reduction
● Writing tasks in CASA, creating your own

pipelines

Why pipelines ?

● Data reduction is a lengthy process, many parts are similar across
datasets: automation !

● Increases reproducibility of the results
● Reduces human errors
● Data sizes are large or going to get larger: easy to port to servers and

run remotely.
● Ease of testing one aspect at a time for complex algorithms like “tclean”
● A step towards “open science”:

https://zenodo.org/record/2631868#.XWiX-JzhVUQ

“Reproducibility and open science in the SKA era” by Rachel Ainsworth

https://zenodo.org/record/2631868#.XWiX-JzhVUQ

● RUNFILES
● Commands can be put into a text file and the

text file can be provided to AIPS
● Quirks: needs to have extension of AIPS userid

in e-hex format
● Any programming: e. g. for loops, condition

testing etc. in “Parseltongue”

AIPS

● SPAM: Source Peeling and Atmospheric
Modeling (Intema et al 2009)

● http://www.intema.nl/doku.php?id=huibintemas
pam

AIPS

http://www.intema.nl/doku.php?id=huibintemaspam
http://www.intema.nl/doku.php?id=huibintemaspam

● Writing tasks and pipelines: Python
● Writing a task in CASA:

XML file : sets the input interface

taskname.py : actual code
● Use of CASA tasks and toolkit functionalities
● Excellent documentation for learning.

CASA

● Writing tasks and pipelines: Python

● Pipeline:

- automating the process that you do
interactively at the terminal

- automation of decision making is crucial !

CASA

● Automation of routine processes: conversion from lta to MS,

flagging of bad antennas, standard calibration, splitting target

source data.

● Efficient elimination of RFI while not overdoing it.

● Automated self-calibration but still giving enough freedom to the

to choose the strategy.

● Easily tailored for special needs: for e. g. for online RFI excision

system testing: can deal with only calibrator data, half or one

fourth of an array of data

CAPTURE

CASA Pipeline-cum-Toolkit for UGMRT Data
Reduction

Visibilities
Flagging,

calibration,
Imaging and

self-calibration

Image/s

Python 2.7 and Common Astronomy Software Applications

(CASA, McMullin, J. P. et al 2007)

Legacy GMRT
OR uGMRT

CAPTURE https://github.com/ruta-k/uGMRT-pipeline

CAPTURE

Multi-source data

- Initial flagging and calibration

- Further flagging and final calibration

Working with calibrated target source data

- flagging

- averaging in frequency

- imaging and self-calibration

Dependencies:
If starting from lta file: listscan, gvfits
Calibration part: vla-cals.list

Output of listobs in a .list file

Initial flagging and calibration

MS file contains:
Primary calibrator/s
Secondary calibrator/s
Target/s: source
names not in the vla
list of calibrators

Dependencies:
If starting from lta file: listscan, gvfits
Calibration part: vla-cals.list

MS file contains:
Primary calibrator/s
Secondary calibrator/s
Target/s: source
names not in the vla
list of calibrators

Gain tables: K, G
Bandpass table
Fluxscale table

Non-working antennas, RFI
prone frequency channels,
Quack, initial clip and tfcrop

Output of listobs in a .list file

Initial flagging and calibration

Tfcrop and rflag:
differently for Central sq.
baselines and other
baselines

Can choose to stop at
intermediate steps for
manual examination of
data.

A single source MS
file for each target in
the data will be
created.

Further flagging and calibration

Tfcrop and rflag:
differently for Central sq.
baselines and other
baselines

Working with calibrated target data

Imaging and self-calibration:

● Option to make a dirty image – can examine and decide self-calibration

strategy.

● Phase-only and amp and phase self-calibration iterations given by the

user carried out.

● Flagging on residual data column is carried out in the self-calibration

loop.

Working with calibrated target data

Initial set-up

Inputs

Functions

Applications

These need to be modified
according to the type of the
data that are to be analysed.

Modifications only for any
special requirements.

The pipeline is a single python program.

Structure of the pipeline program

SET THE STAGE FOR DATA ANALYSIS

fromlta = True # If starting from lta file set it True.

gvbinpath = ['./listscan','./gvfits'] # set the path to listscan and gvfits if fromlta==True.

fromraw = True # True if starting from FITS data. Otherwise keep it False.

fromms = True # True If working with multi-source MS file.

findbadants = True # find bad antennas when True

flagbadants= True # find and flag bad antennas when True

findbadchans = True # find bad channels within known RFI affected freq ranges when True

flagbadfreq= True # find and flag bad channels within known RFI affected freq ranges when True

myflaginit = True # True to flag first channel, quack, initial clips

doinitcal = True # True to calibrate data

mydoflag = True # True to flag on the calibrated data

redocal = True # True to redo calibration - recommended

dosplit = True # True to split calibrated data on target source

mysplitflag = True # True to flag on the target source

dosplitavg = True # True to average channels

doflagavg = True # True to flag on the channel averaged file

makedirty = True # True only if you want to make a dirty image of your target source

doselfcal = True # True if selfcal loop should be run

usetclean = True # True if you want to use tclean (recommended); False will use clean.

Initial set-up: initial flagging and calibration

SET THE STAGE FOR DATA ANALYSIS

fromlta = True # If starting from lta file set it True.

gvbinpath = ['./listscan','./gvfits'] # set the paths to listscan, gvfits

fromraw = True # True if starting from FITS data.

fromms = True #True if working with multi-source MS

Initial set-up: input files

SET THE STAGE FOR DATA ANALYSIS

fromlta = True # If starting from lta file set it True.

gvbinpath = ['./listscan','./gvfits'] # set the path to listscan and gvfits if fromlta==True.

fromraw = True # True if starting from FITS data. Otherwise keep it False.

fromms = True # True If working with multi-source MS file.

findbadants = True # find bad antennas when True

flagbadants= True # find and flag bad antennas when True

findbadchans = True # find bad channels within known RFI affected freq ranges when True

flagbadfreq= True # find and flag bad channels within known RFI affected freq ranges when True

myflaginit = True # True to flag first channel, quack, initial clips

doinitcal = True # True to calibrate data

mydoflag = True # True to flag on the calibrated data

redocal = True # True to redo calibration - recommended

dosplit = True # True to split calibrated data on target source

mysplitflag = True # True to flag on the target source

dosplitavg = True # True to average channels

doflagavg = True # True to flag on the channel averaged file

makedirty = True # True only if you want to make a dirty image of your target source

doselfcal = True # True if selfcal loop should be run

usetclean = True # True if you want to use tclean (recommended); False will use clean.

Initial set-up: initial flagging and calibration

SET THE STAGE FOR DATA ANALYSIS

findbadants = True # find bad antennas when True

flagbadants= True # find and flag bad antennas
when True

findbadchans = True # find bad channels within
known RFI affected freq ranges when True

flagbadfreq= True # find and flag bad channels
within known RFI affected freq ranges when True

myflaginit = True # True to flag first channel,
quack, initial clips

doinitcal = True # True to calibrate data

Initial set-up: initial flagging and calibration

SET THE STAGE FOR DATA ANALYSIS

fromlta = True # If starting from lta file set it True.

gvbinpath = ['./listscan','./gvfits'] # set the path to listscan and gvfits if fromlta==True.

fromraw = True # True if starting from FITS data. Otherwise keep it False.

fromms = True # True If working with multi-source MS file.

findbadants = True # find bad antennas when True

flagbadants= True # find and flag bad antennas when True

findbadchans = True # find bad channels within known RFI affected freq ranges when True

flagbadfreq= True # find and flag bad channels within known RFI affected freq ranges when True

myflaginit = True # True to flag first channel, quack, initial clips

doinitcal = True # True to calibrate data

mydoflag = True # True to flag on the calibrated data

redocal = True # True to redo calibration - recommended

dosplit = True # True to split calibrated data on target source

mysplitflag = True # True to flag on the target source

dosplitavg = True # True to average channels

doflagavg = True # True to flag on the channel averaged file

makedirty = True # True only if you want to make a dirty image of your target source

doselfcal = True # True if selfcal loop should be run

usetclean = True # True if you want to use tclean (recommended); False will use clean.

Initial set-up: flagging, calibration and split

SET THE STAGE FOR DATA ANALYSIS

mydoflag = True # True: flags on the calibrated data

redocal = True # True to redo calibration

dosplit = True # True to split calibrated target data

Initial set-up: flagging, calibration and split

SET THE STAGE FOR DATA ANALYSIS

fromlta = True # If starting from lta file set it True.

gvbinpath = ['./listscan','./gvfits'] # set the path to listscan and gvfits if fromlta==True.

fromraw = True # True if starting from FITS data. Otherwise keep it False.

fromms = True # True If working with multi-source MS file.

findbadants = True # find bad antennas when True

flagbadants= True # find and flag bad antennas when True

findbadchans = True # find bad channels within known RFI affected freq ranges when True

flagbadfreq= True # find and flag bad channels within known RFI affected freq ranges when True

myflaginit = True # True to flag first channel, quack, initial clips

doinitcal = True # True to calibrate data

mydoflag = True # True to flag on the calibrated data

redocal = True # True to redo calibration - recommended

dosplit = True # True to split calibrated data on target source

mysplitflag = True # True to flag on the target source

dosplitavg = True # True to average channels

doflagavg = True # True to flag on the channel averaged file

makedirty = True # True only if you want to make a dirty image of your target source

doselfcal = True # True if selfcal loop should be run

usetclean = True # True if you want to use tclean (recommended); False will use clean.

Initial set-up: frequency avg, flagging

SET THE STAGE FOR DATA ANALYSIS

mysplitflag = True # True to flag on the target source

dosplitavg = True # True to average channels

doflagavg = True # True to flag on the channel

averaged file

Initial set-up: frequency avg, flagging

SET THE STAGE FOR DATA ANALYSIS

makedirty = True # True only if you want to make a dirty

image of your target source

doselfcal = True # True if selfcal loop should be run

usetclean = True # True if you want to use tclean

(recommended); False will use clean.

Initial set-up: imaging and self-calibration

INPUTS

ltafile ='' # lta file

rawfile = '' # TEST.FITS or provide the name of the FITS file if you already have;

myfile1 ='' # MS file (REQUIRED if starting from multi-source MS file)

mysplitfile ='' # target source file name (split file)

mysplitavgfile = '' # target source file name after averaging; REQUIRED if starting from this file

Inputs for flagging and calibration

myquackinterval = 10.0 # time in s to flag at the beginning of a scan and at the end of the scan.

clipfluxcal =[0.0,60.0] # in Jy. typically twice the expected flux; only to remove high points

clipphasecal =[0.0,60.0] # in Jy. typically twice the expected flux; only to remove high points

cliptarget =[0.0,30.0] # in Jy. typically four times the expected flux; only to remove high points

clipresid=[0.0,10.0] # in Jy. 10 times the rms for single channel and single baseline

myrefant = 'C00' # choose a reference antenna - make sure it is one of the working antennas.

uvracal ='' # Leave it to ''; will apply it to all the calibrators in the current version of the pipeline

Inputs for post split averaging of channels

mywidth2 = 10 # number of channels to average - choose aptly to avoid bandwidth smearing.

Inputs for imaging and self-calibration : You will need to change relevant advanced controls if you change the values here.

scaloops = 8 # Total number of self-cal loops (including both phase-only and amp-ph)

mypcaloops = 4 # Number of p-only selfcal loops; should be <= scaloops. The remaning loops will and a&p self-cal.

mythresholds = 0.1 # in mJy. Global flux threshold – starting threshold – will change with iteration.

mycell = ['2.0arcsec'] # Set the cellsize for imaging.

myimsize = [12000] # Set the size of the image in pixel units. Should cover the primary beam.

Inputs

Further control on imaging and self-calibration

mynterms = 2 # nterms used in tclean; not tested for nterms >2.

mywproj2 = -1 # Number of wprojection planes- leave it to -1 so that it is determined

internally in tclean

Solint used for self-cal: provide solints for each self-cal iteration : edit according to the

number of self-cal loops you

have chosen. Has to be of the same length as nscaloops

mysolint2 = ['8.0min','4.0min','2.0min','1.0min','8.0min','4.0min','2.0min','1.0min']

uvrascal='' # uvrange cutoff used in self-calibration – will use in the task gaincal.

More Inputs

Initial set-up

Inputs

Functions

Applications

These need to be modified
according to the type of the
data that are to be analysed.

The pipeline is a single python program.

Structure of the pipeline program

A list of python function calling
CASA tool-kit and tasks

Main processing block: runs the
functions with the inputs given
by the user.

● Works in CASA versions 5.0 and above. Likely also in earlier ones but not tested.

● Copy all the files from github to the directory from which you are going to run the

pipeline.

● In the python program file (.py), make the “Initial set-up” - set the True or False states

of the parameters and then provide the “Inputs”.

Save and run the file using:

casa -c capture-pipeline-V0.py

Or at the CASA prompt using:

execfile(“capture-pipeline-V0.py”)

How to run the pipeline ?

Images obtained using the pipeline

Pipeline works for:

Legacy GMRT : All bands except data taken in dual frequency
mode.

Upgraded GMRT: Bands 3, 4 and 5

For Band 2: it works after editing the choice of channels to
accommodate the notch filter.

Works on sub-array data as well.

Works when flux and phase calibrator are the same.

Peak 0.17 Jy/b
Rms 0.048 mJy/b

Peak 0.17 Jy/b
Rms 0.048 mJy/b

Peak 0.06 Jy/b
RMS 0.028 mJy/b

Peak 0.08 Jy/b
RMS 0.048 mJy/b

Band 4
Peak 0.045
RMS 0.01 mJy/b

Band 4
Peak 0.045 Jy/b
RMS 0.01 mJy/b

Pipeline run duration

Sample numbers:

uGMRT P-band data with on source time of 2.5 hours,
cellsize = 1 arcsec, Imsize = 10000 pixels.

Time taken from split file to final self-calibrated image:
32GB RAM, 8 processors, 3.4 GHz : 3.6 days

For a legacy dataset ~ 6 hr duration:
End-to-end ~3 days.

For uGMRT dataset ~ 9 hr duration, P-band:
End-to-end ~6 days on 128 GB, 24 cores (not an exclusive run)

Memory issues on 32GB machine if imagesize is large ~12000 or so.

CAPTURE: caveats

● Multiple targets: Two step run needed. First step to create calibrated split files

for each source and then a separate imaging run for each target is needed.

● If a self-cal run is interrupted, the full imaging run needs to be carried out

again.

● For a different choice of parameters in tclean, the python function “mytclean”

can be edited appropriately and used (with caution!).

● The pipeline is not tested for nterms > 2.

● Full Stokes data reduction is possible but polarization calibration is not part of

it as yet.

● Primary beam correction is a separate task to be run outside the pipeline.

https://github.com/ruta-k/uGMRTprimarybeam

Summary
● Pipelines are essential: reproducibility, automation, data sizes,

working on remote servers – in general makes life easier !

● Need to be used with caution as at low frequencies each field

needs a tailored strategy to obtain the best possible image for

the intended science.

● CAPTURE available for uGMRT continuum data reduction - can

be easily tailored for special needs.

● Writing new CASA tasks, pipelines made easy by Python

● A move towards “open science”.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

