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OUTLINE

● Molecular  gas:  The  CO  rotational  lines.

● The  importance  of  radio  spectral  lines. 

● Equilibrium  issues:  “kinetic”,  “excitation”,  “brightness”  temperatures.

● Atomic  gas:  The  HI 21cm  hyperfine  line.

● “Ionized”  gas:  The  CII 158μm  fine  structure  line.

● Lambda-doublets,  recombination  lines,  megamasers,  inversion  lines,  …



THE   IMPORTANCE   OF   RADIO   SPECTRAL   LINES

● Critical  spectral  lines  of  the  ISM  (e.g.  the  HI 21cm  line,  molecular  
   rotational  lines,  the  CII-158μm  line  of  ionized  carbon,  etc.,  all  lie  at  
   radio  wavelengths  (~  100 MHz – 2 THz).

(Boomsma, Ph.D. thesis)

● Understanding  galaxies  requires  us  to  understand  both  stars  and  the   
   interstellar  medium  (ISM):  Galaxies  look  very  different  in  stars  and  gas! 

NGC6946:  Optical NGC6946:  HI

● Main  constituents  of  galaxies:  Dark  matter,  Stars,  Gas.



Species    Density
cm-3

Temperature 
K

  Pressure
P/k  cm-3K

Mass
109  M⊙

HI (CNM)  30 80 ~2500 2.8

HI (WNM)  0.3 8000 ~2500 2.2

HII (WIM) 0.3 8000 ~2500 1.0

H2 >1000 10 >104 1.3

HII (HIM) 0.003 106 ~3000 < 1 ?

Dust,PAHs - - - 0.01

(e.g. Draine 2011)
● Most  important  phases  of  the  ISM:  Neutral  atomic  gas  (HI),  Molecular
    gas  (H2),  ionized  gas  (HII).  

THE   ISM   OF   THE   MILKY   WAY



THE   IMPORTANCE   OF   RADIO   SPECTRAL   LINES

● Atomic  gas:  The  HI 21cm  line  The  most  important  line  in  astronomy!?

● Arise  from  quantum  mechanical  transitions  at  a  specific  frequency.

● Probe  physics  and  chemistry  in  the  gas  phase,  i.e.  in  the  ISM.

● Radio  spectral  lines:  A  view  unbiased  by  dust  extinction!

● Measure  line  velocities!  E.g.  galaxy  redshifts,  rotation  curves,  etc.. 

● Can  provide  local  measurements  of  number  density,  column  density,  
   temperature,  magnetic  field  strength,  gas  mass,  CMB  temperature,  …!

● Molecular  gas:  Bulk  of  molecules  in  H2,  which  has  no  electric  dipole  
   moment  for  rotational/vibrational  lines.  Also,  H2  is  a  light  molecule,  so  
   lines  at  mid-IR  wavelengths.  hn/k  > 500 K   Not  seen  in  typical  clouds.
    CO  rotational  lines  are  the  main  bulk  tracer  of  molecular  gas.

● Ionized  gas:  Radio  recombination  lines,  the  CII-158μm  fine-structure  line.



EQUILIBRIUM   ISSUES

● Level  populations      :   (nu/nl)  =  (gu/gl) e
-hn/kT  

● Thermodynamic  equilibrium:  Maxwell-Boltzmann  velocity  distribution 
   Boltzmann  energy  levels,  Planck  radiation  field,  etc.    

● Velocity  distribution  :   f(v)  =  (m/2πkT)1/2 e-mv2/2kT  

● Radiation  field           :   B(n,T)  =  (2hn3/c2) [ehn/kT – 1]-1 

● Critical  aspect:  A  single  temperature!

Wien  limit                :   B(n,T)  =  (2hn3/c2) e-hn/kT

Rayleigh-Jeans  limit:   B(λ,T)  =  (2kT/λ2)



Species    Density
cm-3

Temperature 
K

  Pressure
P/k  cm-3K

Mass
109  M⊙

HI (CNM)  30 80 ~2500 2.8

HI (WNM)  0.3 8000 ~2500 2.2

HII (WIM) 0.3 8000 ~2500 1.0

H2 >1000 10 >104 1.3

HII (HIM) 0.003 106 ~3000 < 1 ?

Dust,PAHs - - - 0.01

(e.g. Draine 2011)

The  ISM  is  NOT  in  thermodynamic  equilibrium!



EQUILIBRIUM   ISSUES

● For  typical ISM  densities,  the  thermalization  timescale  in  most  phases  is 
   short   Phases  likely  to  have  a  well-defined  kinetic  temperature,  TK.

● But,  the  ISM  pressure  is  low   Mixing  of  phases  is  very  slow   
  Different  kinetic  temperatures,  but  pressure  equilibrium!? (Spitzer 1956)

 Velocity  distribution :   f(v)  =  (m/2πkTK)1/2 e-mv2/2kTK  

● Radiative  timescales  different  from  collisional  timescales    Level
   populations  may  not  be  determined  by  the  kinetic  temperature.

● TX  depends  on  TK,  on  the  local  radiation  field  at  the  line  frequency,  and  
    the  radiation  field  at  the  frequencies  of  lines  from  the  levels  in  question. 

● Define  the  excitation  temperature,  TX,  of  a  transition  by  

(nu/nl)  =  (gu/gl) e
-hn/kTX  

(e.g. Wouthuysen 1952; Field 1959)

● At  low  (radio)  frequencies,  define  the  line  brightness  temperature  by

In  =  (2kTB/λ2)



THE   HI  21CM   LINE

● “Spin-flip”  transition:  electron  moves  from  a  state  with  spin  parallel  to  
     that  of  the  proton,  to  one  with  anti-parallel  spin.

● “Forbidden”  magnetic  dipole  transition:   A21cm =  2.87 ´ 10-15  s-1.

n = 1420.40575 MHz 

(Courtesy:  NRAO)

● (hn/k) ~ 0.07 K,  ≪ TS   Energy  level  ratio  (nu/nl)  ≈  (gu/gl)  = 3.  

● General  equation:  HI  column  density,  NHI =  1.8  ´ 1018  ∫TS tv dV .  

Excitation  temperature, TX ≡ 
 Spin temperature, TS.

● For  unresolved  galaxies:  HI  mass,  MHI = 2.35 ´ 105  D2 ∫S dV   (M⊙)



● Emission  studies:  If  tv ≪ 1   NHI  =  1.8 ´ 1018  ∫TB dV 

     Can  measure  NHI  directly  from  HI  21cm  emission  studies!

● If  tv ≪ 1, line  profile  would  be  Gaussian  in  local  thermal  equilibrium.
    Can  fit  a  multi-Gaussian  profile  to  infer  the  kinetic  temperature.

● Absorption  studies:  NHI = 1.8 ´ 1018  <TS> ´ ∫tv dV  ;      In =  I0 ´ exp(-tv).  
    Can  infer  TS  if  NHI  is  known  (HI 21cm  emission  or  Ly-a  absorption).

HI 21CM   STUDIES:   OBSERVABLES

● All-sky  HI 21cm  emission  surveys:  HI-selected  galaxy  samples,  unbiased
     by  dust  extinction!   HI  mass  function,  cosmological  HI  mass  density!

● External  galaxies:  HI  mass,  MHI = 2.35 ´ 105  D2 ∫S dV   (M⊙)
    Gas  mass,  spatial  distribution,  velocity  field,  dynamical  mass.

● High-z  galaxies:  Weak  line!   “Stacking”  to  measure  average  gas mass!

● The  Epoch  of  Reionization:  HI 21cm  mapping  of  the  IGM  at  z > 6  
     Probes  the  nature  of  the  earliest  galaxies  and  cosmological  issues!



A   TWO-PHASE   NEUTRAL   MEDIUM

 (Clark et al. 1962; Clark1965; 
       Radhakrishnan et al. 1972)

Wide  HI 21cm  emission  profiles,  narrow  HI 21cm  absorption.

“Two-phase”  model,  with  cold  neutral  medium  and  warm  neutral  medium!



KINETIC   TEMPERATURES   IN  THE   GALAXY

● Based  on  Gaussian  fitting:  A  pinch  (or  a  ton?)  of  scepticism  needed!

(Roy  et al. 2013)

● Cold  phase  kinetic  temperatures  ~  20 – 200  K.  

(Heiles & Troland 2003; Roy et al. 2013)

● Lots  of  HI  in  the  thermally  “unstable”  temperature  range,  500 – 5000 K.
  Very  little  detected  gas  in  the  WNM  temperature  range,  > 5000 K.



VELOCITY   FIELDS 

● Interferometric  HI 21cm  mapping  studies
    Determine  velocity  field  of  a  galaxy!  

(e.g. Begum et al. 2005)But... Flat  rotation  curves   Dark  Matter  halos!!

● For  circular  orbits,  V = [GM/R]1/2.
   Should  have  V  R-1/2  at  large  R, 
   as  most  mass  is  in  inner  regions.          (M33: Thilker  et  al.)



HI   IN   HIGH-REDSHIFT   GALAXIES:   ABSORPTION 

● The  atomic  gas  in  most  high-z  galaxies  is  in  the  warm  phase. 

● Clear  redshift  evolution  in  the  detection  rate  of  HI 21cm  absorption  (i.e. 
    the  cold  gas  fraction),  and  in  the  spin  temperature.

(NK et al. 2014; Murthy et al., in prep.)



HI   IN   HIGH-REDSHIFT   GALAXIES:   EMISSION

● Stacking  of  GMRT  HI 21cm  emission  from
   star-forming  galaxies  with  known  redshifts: 
     Measurements  of  ΩHI  at  z ~ 0.2 –2! 

● HI  fraction  &  HI  depletion  time  at  z ~ 0.3
    similar  to  values  in  the  local  Universe.
   High  HI  fraction  and  very  rapid  HI  
   depletion  at  z ~ 1!  

(Bera et al. 2019; Chowdhury et al., in prep.)

z ~ 1

z ~ 0.3



MOLECULAR   GAS:   CO   ROTATIONAL   LINES

(e.g. Carilli & Walter 2013)

● CO  rotational  lines  are  the  best  tracer  of  the  bulk  of  the  molecular  gas!

● CO  line  frequencies ~ (115.271 ´ J) GHz  ALMA,  JVLA!
(NRAO)

● “Low”  Einstein  A-coefficients:  A10 ~ 7 ´ 10-8 s-1.

   Aul  n
3   High-J  lines  have  higher  Einstein  A's.

● CO  “line  luminosity”,  Ĺ(CO)   TB(CO):
     Ĺ(CO) = 3.25 × 107  [DL/nobs]

2 ´ ∫S dV / (1+z)3

● CO-to-H2  conversion  factor,  aCO:   MMOL =  aCO Ĺ(CO)                 

     aCO ~ 4 M⊙ (K km/s  pc2)-1  (Disks),  ~  1 M⊙ (K km/s  pc2)-1   (Starbursts).

    aCO > 10 M⊙ (K km/s  pc2)-1  (Dwarfs)!   Strong  metallicity  dependence!!!
    Much  easier  to  detect  CO  emission  from  a  ULIRG  than  from  a  dwarf!

● CO  line  luminosity  Molecular  cloud  (virial)  mass!  
     Measure  the  molecular  gas  mass  of  galaxies!!!

(e.g. Dickman 1986)

                    (e.g. Bolatto et al. 2013)

(e.g. Solomon et al. 1997)



STAR   FORMATION   EFFICIENCY

● Starburst  galaxies  (and  QSOs)  are  far  more  efficient  in  forming  stars  
    than  disk  galaxies  on  the  main  sequence!   

(Daddi et al. 2010)

(Daddi et al. 2010; Genzel et al. 2012)

● SFRs  higher  by  an  order  of  magnitude,  and  H2  depletion  times  lower  by
    an  order  of  magnitude  in  starburst  galaxies  (ULIRGs,  SMGs)  and  QSOs.   



THE   COSMOLOGICAL   H2   MASS   DENSITY

● Redshift  evolution  of  cosmological  H2  density  broadly  traces  SFR  density!

(Decarli et al. 2019; Riechers et al. 2019)

● Unbiased  ALMA  &  JVLA  surveys  for  CO  emission:  ASPECS,  ColdZ!  

(Decarli et al. 2019; Madau & Dickinson 2014)

● CO  emission  still  the  best  way  of  measuring  redshifts  for  dusty  galaxies   
    (e.g.  SMGs!):  HDF850.1  finally  detected  at  z ~ 5.2,  after  15  years!  

(Walter et al. 2012)

(Decarli et al. 2019)



THE   CII-158μM   LINE

● Fine-structure  line  in  the  ground  state  of  singly-ionized  carbon,  ~1.9  THz.
     “Low”  Einstein  A-coefficient:  ~ 2.4 ´ 10-6  s-1. 

● Strongest  cooling  line  in  most  galaxies!  ~ 0.5%  of  a  galaxy’s  luminosity!

● Traces  cold  atomic  gas,  molecular  gas,  and  photo-dissociation  regions. 

● CII  line  luminosity  correlates  
    with  SFR  in  nearby  galaxies.

(e.g. de Looze et al. 2011, 2014)

● Much  higher  luminosity  than
   that  of  CO  lines,  for  both  
   normal  galaxies  and  starbursts!!!
     Best  gas  tracer  in  high-z  
           galaxies  (ALMA!!!).

● Optically-thin,  so  good  tracer  of  
    gas  kinematics!



CII-158μM   EMISSION  AT   HIGH   REDSHIFT

● Has  been  used  to  measure  redshifts  of  galaxies  at  z ~ 7 – 8,  for  objects  
    with  only  photometric  redshifts!

(e.g. Smit et al. 2018)

● Unbiased  ALMA  surveys  now  being  carried  out  for  CII  emission  at  z > 4!

(Smit et al. 2018)

● Spectacular  imaging  of  CII  emission  around  z ~ 6  QSOs!
(e.g. Venemans et al. 2019)



OTHER   RADIO   LINES

● “Other”  rotational  lines:  HCN,  CS,  H2O, …:  Trace  higher-density gas.

● OH  Lambda-doubled  lines,  NH3  inversion  lines,  CH3OH  lines:  Probe  
    fundamental  constant  evolution  with  redshift. 

● H2O  22.3  GHz  megamasers:  Arise  in  AGN  accretion  disks.  For  Keplerian  
   orbits,  can  measure  the  AGN  distance,  and  thence,  the  Hubble  constant! 

● Physical  conditions  in  molecular  clouds:  Density  (e.g.  HC3N),   
    temperature  (e.g. NH3),  magnetic  fields  (e.g.  OH,  CN,  CCH), … 

● OH  1667-MHz  megamasers:  Tracers  of  mergers  at  high  redshifts.

● Radio  recombination  lines:  Density,  temperature  of  the  WIM.
(e.g. Gordon & Sorochenko 2009)

(e.g. Briggs 1998; Darling & Giovanelli 2001, 2004)

(e.g. Henkel et al. 2008, 2009;  Heiles & Crutcher 2005)

(e.g. NK 2011;  NK et al. 2015, 2018)

(e.g. Moran et al. 1995; Reid et al. 2013, 2019)

● Complex  molecules:  ~ 200  species  detected  in  the  ISM  so  far!  Searches 
    under  way  for  amino  acids,  especially  glycine  (lots  of  heat,  no  light)!!!

(e.g. Gao & Solomon 2004)

(e.g. Hollis et al. 2004, 2006)





EXTRA   SLIDES



H2O  MEGAMASERS:   THE   DISTANCE   SCALE

● 22 GHz  water  megamasers  arise  in  accretion  disks  that  rotate  
    around  the  central  black  holes  of  bright  active  galactic  nuclei. 

● VLBI  studies:  The  megamaser  emission  consists  of  multiple  lines,  
    each  arising  from  small  regions  (of  size ~ 0.1 pc)  in  the  disk.  The  
    line  velocities  trace  the  disk  rotation!

(e.g. Haschick et al. 1990)

(e.g. Claussen et al. 1984)

● The  H2O  megamasers  in  NGC4258:  Lovely  Keplerian  rotation!!! 
   Very  slight  warp  in  the  disk!

(Moran et al. 1995)



H2O  MEGAMASERS:   THE   DISTANCE   SCALE

(Courtesy Mark Reid and  NRAO)



H2O  MEGAMASERS:   THE   DISTANCE   SCALE

● VLBA  monitoring  of  the  H2O  megamasers  in  NGC4258  with  angular   
    resolution  of  ~ 0.2 mas,  along  with  GBT  monitoring  to  measure  the  
    accelerations  of  different  lines:  Map  the  rotation  of   the  megamasers  
    and  determine  their  distance  from  the  central  black  hole.  From  the  
    measured  angular  distance,   determine  the  distance  of  NGC4258:   
                                   7.58  0.08 (stat.)   0.08 (syst.) Mpc 

● Detect  Cepheids  in  NGC4258:  Calibrate  the  Cepheid  scale  to  3%!
    Measure  both  H0  and  Type  Ia  supernovae  distances  to  3%!

(Reid et al. 2019)

(e.g. Riess et al. 2011; Humphreys et al. 2013)

● En  passant,  measure  the  black  hole  mass:  4 ´ 107 M⊙!
(e.g. Moran et al. 1995; Humphreys et al. 2013)

● Hubble  constant,  H0 = 72.0  1.9  km/s/Mpc  (~ 4  deviant  from  Planck!).
(Reid et al. 2019)



ESTIMATING   THE   MOLECULAR   GAS   MASS

● The  CO  line  luminosity  of  a  uniform  cloud  at  a  distance  D is
            LCO =  D2 ∫ ICO  dΩ           ,  where  ICO  =  ∫ TB dV.

        LCO »  πR2  TCO DV   ,   DV ≡ Line  width,  R≡ cloud  radius,
                                                    TCO ≡Peak  brightness  temperature.

● For  a  spherical,  virialized  cloud  of  mass  M,    DV »  (GM/R)1/2

                                M  =  LCO . (4r/3πG)1/2 . (1/TCO)  

● IF  the  ratio  (r1/2/TCO)  doesn't  vary  (on  the  average)  from  one
   galaxy  to  another,  and  if  different  clouds  don't  overlap  in  
   velocity,  the  total  mass  is  proportional  to  the  line  luminosity!

● Test  this  by  inferring  virial  masses  from  13CO  measurements 
   of  line  width  and  cloud  size  Compare  with  12CO  intensity.



(e.g. Solomon  et al. 1987; 
           Scoville et al. 1987)

Near-linear  relation  between  CO  line  luminosity  &  virial  mass!

ESTIMATING   THE   MOLECULAR   GAS   MASS



ESTIMATING   THE   MOLECULAR   GAS   MASS

(Bolatto et al. 2013)
Slope  appears  to  depend  on  galaxy  type.



AN   N(HI)   THRESHOLD   FOR   CNM   FORMATION 

    N(HI)  ~  1017  cm-2 :  HII → HII + HI.
    N(HI)  ~   2 × 1020  cm-2  :  Warm  HI → Warm  HI  + Cold  HI.  
    N(HI)  ~  5 × 1020  cm-2  :  HI → HI + H

2
.

    N(HI)  ~  1022  cm-2 :  HI → H
2
.

● Four  ISM  phase  transitions ?

(NK et al. 2011)

● Sharp  drop  in  CNM  fraction  
    for  N(HI)  < 2 × 1020  cm-2. 

(Savage et al. 1977)

   (e.g. Schaye 2001; Krumholtz et al. 2009)

● Inefficient  self-shielding  against  
   soft  X-ray / UV  photons ?  Or    
   vertical  dynamical  equilibrium
   yielding  WNM-only  sightlines ?  

● Median  spin  temperature:
   ~ 340 K:  N(HI) 2 × 1020  cm-2,
  ~ 2500 K:  N(HI) < 2 × 1020  cm-2.

(Kim et al. 2014)



SPIN   TEMPERATURES   IN   DLAS
(NK et al. 2014; Murthy et al., in prep.)

● Low  SFR  &  metallicity,  high  Ts:  Are  most  high-z  DLAs  dwarfs ?

● Most  high-z  DLAs  have  high  Ts,  >> 300 K   Low  CNM  fraction,
    due  to  low  metallicity  in  high-z  DLAs:  Lack  of  cooling  routes. 

(NK & Chengalur 2001; NK et al. 2009)



EQUILIBRIUM   ISSUES

● Interstellar  radiation  field very  different  from  that  of  a  black body!

● In  general,  TB  ¹  TK .    Note:  TB  is  NOT  a  physical  temperature! 

(Draine 2011)

● Power  per  unit  area  between  n  and  n+dn,  in  solid  angle dΩ:
                                   Pn = In . Cosθ . dn. dΩ        (In º Intensity)



EQUILIBRIUM   ISSUES

● Radiative  timescales  different  from  collisional  timescales    Level
  populations  may  not  be  determined  by  the  kinetic  temperature.

● TX  depends  on  the  kinetic  temperature,  the  local  radiation  field  
   at  the  line  frequency,  and  the  radiation  field  at  the  frequencies  of 
   transitions  connected  to  the  levels  in  question. 

● Define  the  Excitation  Temperature  TX  of  a  transition  by  

(nu/nl)  =  (gu/gl) e
-hn/kTX  

● In  general,  TX  ¹  TK ,  except  for  densities  ≫  the  critical  density.   

● NOTE:  TX  is  NOT  a  physical  temperature !   

● For  spectral  lines,  all  three  temperatures  matter:  the  line  strength  
   depends  on  TX  and  is  quantified  by  TB;  the  width  depends  on  TK. 



                                             Leiden-Argentine-Bonn  survey                     (Kalberla  et al. 2005; 
●                                                                                                                                       Bajaja et al. 2005) 

ALL-SKY   HI-21CM   EMISSION   IMAGE

● Note: Assumed  tv ≪ 1 to  infer  NHI  from  the  brightness  temperature.

● Combine  with  the  Galaxy's  velocity  field  to  infer  the  scale  height!
(e.g. Heiles  et al. 1985)



RADIATIVE   TRANSFER
● Power  per  unit  area  between  n  and  n+dn,  in  solid  angle dΩ:
                      Pn = In dn dΩ                (In º Intensity)

● Equation  of  radiative  transfer: 
        dIn  =  -Inκnds  +  jnds

● Define  optical  depth,  dtn = κn ds
     dIn  =  -In dtn  +  (jn/κn) dtn    

● jn  º Emissivity,  κn º Attenuation  coefficient.

(Draine 2011)

● For  a  uniform  medium,  with  level  populations  given  by  TX

    In   =  In(0) e-tn  +   Bn(TX) (1 - e-

tn)
● At  radio  wavelengths,   In  =  (2kn2TB/c2)  

                TB  =  TB(0) e-tn  +   (hn/k) [ehn/kTX – 1]-1 (1 – e-tn).



THE   HI-21CM   LINE:   ABSORPTION   ISSUES

● Level  populations:  (n1/n0) = (g1/g0) e
-hn/kTS .

   TS º  “Spin  temperature”;  g = (2S + 1);  g1 = 3,  g0 = 1.

● hn/k » 0.07 K, ≪  TS    (n1/n0) »  3 (1 – hn/kTS)   n » 4n0.

● The  absorption  cross-section  is  given  by
                           s10(n) =   (g1/g0) (c

2/8πn2) A21cm f(n).

● The  attenuation  coefficient, κn = n0s01(n) – n1s10(n).

            κn =  (c2/8πn2). 3. A21cm . (n/4). f(n) [1 – e-hn/kTS ]
                      =  (3c2/32πn2) . A21cm. n. f(n) (hn/kTS)

● Optical  depth, tn =  ∫κn ds =  (3c2/32πn2)  A21cm f(n) . (hn/kTS) NHI 

      Total  HI  column  density,  NHI =  1.823  ´ 1018  ∫TS tv dV.



(Courtesy:  MIT-Haystack)

● Last  phase  transition  in  the  Universe;  probe  of  cosmology!

HI-21CM   EMISSION   FROM   THE    EOR

● HI-21cm  emission  from  the  EoR:  GMRT,  LOFAR,  MWA,  SKA...
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