## **Spectral Line Techniques**

#### Prasun Dutta

email: pdutta.phy@itbhu.ac.in



Weisberg, J. M., Rankin, J., & Boriakoff, V. 1980, A&A, 88, 84

# **Spectral Line Techniques**

- Most of the emission is restricted to a narrow frequency range
- The transitions are well known from atomic/molecular physics
- Emission and Absorption \*
- Almost always have associated continuum emission
- Emission/Absorption can be from extended sources, high resolution image/map making requires to do interferometry.





Importance to learn spectral line analysis (for continuum studies!)







#### Timeline

- Observation and Techniques with interferometers
  - Observation Preparation [Nissim again!]
  - Calibration
  - Doppler correction
  - Continuum Subtraction
  - Map making
- Science

## Takeaways for the science case

- What is the line frequency? Cosmological/Doppler redshift. Which frequency band to observe?
- Compact or extended source ? If extended do the interferometer see it all? Choose antenna configuration wisely.
- What velocity/spectral resolution is required?
- What bandwidth is required?
- Galactic/extragalactic line?

#### **Doppler correction I**





#### Topocentric

|                           | Velocity (km/sec) | Correction       | Frame Name    |
|---------------------------|-------------------|------------------|---------------|
| Varies with time !        | 0.5               | Earth Spin       | Geocentric    |
| Varies across dates!      | 30                | Earth revolution | Heliocentric  |
| For Galactic observations | 20                | Sun Motion       | LSR           |
| For Extragalactic         | 230               | Galaxy rotation  | Galactocenric |
| For high redshift         | 100               | LG motion        | Local Group   |

#### Choice of channel width, bandwidth and NChan

- First select the channel width required. (say 8.0 KHz)
- Guess the width of the spectral line/feature and keep enough spectral baselines in both sides. That decides the bandwidth. (say 3.8 MHz)
- Bandwidth/Channel width gives you number of spectral channel = NChan (~180)
- Choose these parameters now from one of the available sets.

| <ul> <li>Should (</li> </ul>      | check the data                                       | rate! | Bandwidth                                                             | Channels | Integ. Time |
|-----------------------------------|------------------------------------------------------|-------|-----------------------------------------------------------------------|----------|-------------|
| Interferometry :<br>Spectral Line | Total Intensity<br>(16 MHz and<br>lower BW<br>modes) | 16,6  | 16 / N<br>(N=4,8,16128)<br>(viz. 4, 2, 1,<br>0.5,0.25 & 0.125<br>MHz) | 512, 256 | 2,4,8(sec)  |

Check the GWB setups and figure out what you will do.

## Choosing Bandpass calibrator(s)

- \*Need to choose phase and flux calibrators (Ishwar)
- Bandpass Calibration: Calibration for the spectral response of Interferometer.
- A calibrator source is used, the source need not be a point source.
- If the phase calibrator has enough flux then that can be used.
   Calibrator spectra need to be flat!



## **Choosing Bandpass Methods(s)**

- Main spectral response come from the baseband filter
- Position Switching: By observing a strong calibrator source near to the target source. Almost all observation not involving spectral line from our galaxy uses this method.
- Frequency Switching: Shift the sky frequency. This does not change the response of the bandpass filter. Almost all observations involving spectral line from our galaxy uses this method.
  - Frequency switching (In band): If a large bandwidth is available, one can switch the frequency inside the band itself. This improve the signal to noise.
- Choosing calibrator with low optical depth.

| Source                 | Coordinates<br>( <i>l</i> , <i>b</i> ) | <i>S</i> <sup><i>a</i></sup> <sub>1.4</sub><br>Jy | $\tau_{\rm rms}^{\ \ b}$<br>×10 <sup>-3</sup> | $	au_{ m peak}$ |
|------------------------|----------------------------------------|---------------------------------------------------|-----------------------------------------------|-----------------|
| GMRT targets:          |                                        |                                                   |                                               |                 |
| B0316+162              | 166.6,-33.6                            | 7.8                                               | 0.75                                          | 0.496           |
| B0438-436              | 248.4,-41.6                            | 5.0                                               | 1.46                                          | < 0.0009        |
| B0531+194              | 186.8, -7.1                            | 6.8                                               | 0.99                                          | 0.631           |
| B0834-196 <sup>g</sup> | 243.3,+12.6                            | 5.0                                               | 1.08                                          | 0.187           |
| B1151-348              | 289.9,+26.3                            | 5.0                                               | 1.05                                          | 0.120           |
| B1245-197              | 302.0,+42.9                            | 5.3                                               | 1.23                                          | 0.032           |
| B1345+125              | 347.2,+70.2                            | 5.2                                               | 1.07                                          | 0.086           |
| B1827-360              | 358.3,-11.8                            | 6.9                                               | 0.89                                          | 0.227           |
| B1921-293              | 9.3,-19.6                              | 6.0                                               | 1.02                                          | 0.377           |
| B2223-052              | 59.0,-48.8                             | 5.7                                               | 0.79                                          | 0.148           |
| WSRT targets:          |                                        |                                                   |                                               |                 |
| B0023-263              | 42.3,-84.2                             | 7.5                                               | 1.04                                          | 0.0037          |
| B0114-211              | 167.1,-81.5                            | 3.7                                               | 1.58                                          | 0.044           |
| B0117-155              | 154.2,-76.4                            | 4.2                                               | 1.51                                          | 0.0067          |
| B0134+329 <sup>g</sup> | 134.0,-28.7                            | 16.5                                              | 0.53                                          | 0.058           |
| B0202+149              | 147.9,-44.0                            | 3.5                                               | 0.98                                          | 0.084           |
| B0237-233              | 209.8,-65.1                            | 5.7                                               | 1.19                                          | 0.116           |
| B0316+413              | 150.6,-13.3                            | 23.9                                              | 0.49                                          | 0.230           |
| B0355+508              | 150.4, -1.6                            | 5.3                                               | 2.12                                          | 6.438           |
| B0404+768              | 133.4,+18.3                            | 5.8                                               | 1.16                                          | 0.424           |
| B0429+415              | 161.0, -4.3                            | 8.6                                               | 0.90                                          | 0.716           |
| B0518+165              | 187.4,-11.3                            | 8.5                                               | 1.08                                          | 1.130           |
| B0538+498              | 161.7,+10.3                            | 22.5                                              | 0.49                                          | 0.912           |
| B0831+557              | 162.2,+36.6                            | 8.8                                               | 1.15                                          | 0.089           |
| B0906+430              | 178.3,+42.8                            | 3.9                                               | 0.82                                          | 0.0059          |
| B1328+254              | 22.5,+81.0                             | 6.8                                               | 0.33                                          | 0.0016          |
| B1328+307              | 56.5,+80.7                             | 14.7                                              | 0.30                                          | 0.0082          |
| B1611+343              | 55.2,+46.4                             | 4.8                                               | 0.72                                          | 0.0033          |
| B1641+399              | 63.5.+40.9                             | 8.9                                               | 0.49                                          | 0.0014          |

$$V_{AB}^{sky}(\nu) = \langle E_A^* E_B \rangle$$



- The spectral variation of bandpass is weak.
- If single channel does not have enough signal to noise, some channels can be averaged to gain in sensitivity for temporal calibration (g\_AB).
- The temporal variation in g\_AB may not be weak, but the temporal variation in B\_AB is weak.



**Amplitude and Phase Calibration** 

 We first do calibration for a given channel (nu\_0) and find the stronger temporal variations in gain, g\_A(t).



$$\frac{V_{AB}^{band}(t,\nu)}{V_{AB}^{band}(t,\nu_0)} = \frac{B_{AB}(t,\nu)}{B_{AB}(t,\nu_0)} = B'_{AB}(t,\nu)$$

AIPS: BPASS, BPASSPRM(5) = 1, BPASSPRM(10) = 3

 $B'_{AB}(t,\nu) = b^*_A(t,\nu)b^*_B(t,\nu)$ 

N antenna -> N(N-1)/2 measurements

- We first do calibration for a given channel (nu\_0) and find the stronger temporal variations in gain, g\_A(t).
- If the bandpass calibrator is not a point source, then the visibilities at different baselines can be different. Do not worry, the variation with baseline is taken care of when you do the (complex) division.
- Gains are antenna based

 $B'_{AB}(t,\nu) = b^*_A(t,\nu)b^*_B(t,\nu)$ 

# N antenna -> N(N-1)/2 measurements TS BP TS BP TS BP TS BP TS BP BP BP BP

Single Baseline, Time

#### **AIPS: DOBAND**

- = 1 : Average everything
- = 2 : Nearest in time
- = 3 : Interpolate in time

- In case you have many observations of bandpass, interpolate in time/use nearest bandpass in time.
- If you happened to have only one... or two bandpass separated over large time, then just average all entries.
- Polynomial fit across time/ frequency also can be tried.

When only one observation

Check which gives better result



- Data need to be FLAGGED for different spectral lines too.
- Bandpass solutions for bad antennas are often completely different from the good ones... easy identifications.
- Do Scalar averaged cross power spectra and look for spikes (positive or negative) and inspect those channels.
- Do FLAGGING and BANDPASS calibration iteratively.

Average amplitudes and phases separately

**Vector Average:** 

Average Real and Imaginary separately



#### **Doppler correction II**

- Necessary if you need spectral resolution > 1.2 km /sec.
- This correction is for the earth's rotation during the observation.



#### **Continuum Subtraction**



#### **Continuum Subtraction**

$$V_{AB}(\nu) = V_{AB}^{cont}(\nu) + V_{AB}^{line}(\nu)$$

$$I(l, m, \nu) = I^{cont}(l, m, \nu) + I^{line}(l, m, \nu)$$

#### Both baseline based [UVSUB, UVLIN] and Image based [IMLIN] algorithms exists

## **Continuum Subtraction [UVLIN]**

 $V_{AB}(\nu) = V_{AB}^{cont}(\nu) + V_{AB}^{line}(\nu)$ 

- Works on each baseline separately.
- Choose line free channels in the band and fit a low order polynomial.
- Identify outliers compared to the fit and FLAG those!
- Subtract the polynomial from all channels.



## **Continuum Subtraction [UVLIN]**

- No need to make an image!
- Fast algorithm.
- Automated flagging.
- Statistics of continuum is estimated.
- Assumes uniform uv coverage across frequencies
- Field of view over which works is restricted
- More residual flux away from phase centre

**Advantages** 

## **Continuum Subtraction [UVLIN]**

$$V(u,v,\nu) = I_0 \left[ \cos\left(\frac{2\pi \nu}{c} [b_x l_0 + b_y m_0]\right) + i\sin\left(\frac{2\pi \nu}{c} [b_x l_0 + b_y m_0]\right) \right]$$

$$\theta_S << \frac{\nu_0}{\Delta \nu} \theta_{beam}$$

$$\Delta S \sim S \frac{\pi^2}{36} \left(\frac{\Delta \nu}{\nu_0}\right)^2 \frac{\theta_S^2}{\theta_{beam}^2}$$

- Assumes uniform uv coverage across frequencies
- Field of view over which works is restricted

**Disadvantages** 

 More residual flux away from phase centre



## **Continuum Subtraction [IMLIN]**

Advantages

**Disadvantages** 

- Make image for each channel ( a data cube) by deconvolving the dirty beam
- For each pixel fit a lower order polynomial across the channels and subtract the polynomial values from the same pixel at all channels
- Assumes point spread function and noise to be same across the band

$$\Delta S \sim S \frac{\pi^2}{36} \left(\frac{\Delta \nu}{\nu_0}\right)^2 \frac{(\theta - \theta_S)^2}{\theta_{beam}^2}$$

- Fast algorithm.
- Removes continuum at even large distance from the phase centre
  - Statistics of continuum is estimated.
- Imaging problems
- Residuals scales as distance from the source
- Do not work well for extended source and not good uvcoverage

Cornwell, Uson, Haddad, (1992), A&A, 258, 583

## **Continuum Subtraction [UVSUB]**

Advantages

**Disadvantages** 

- Make image combining all the line free channels.
- Calculate the visibility model for the continuum image
- Subtract this model from all the channels

$$\sigma_{Line} = \sigma_0 \sqrt{1 + \frac{1}{N}}$$

Dynamic Range  $O = \frac{I_{Cont}^{peak}}{\sigma_{Line}}$ 

 Removes continuum at even large distance from the phase centre, residuals in the line free channels are practically zero!

Gets robust continuum maps

- Very slow!
- Requires good continuum image/model

#### Science Cases: Data Cube

#### **Extended Source: HI in Galaxy**

#### **Point Source: Galactic HI absorption**





Roy et al. MnRAS, 436, 3, (2013), 2352

Walter et al. (2008) ApJ, V-136, P- 2563

#### Science Cases: HI in Galaxy

#### **Extended Source: HI in Galaxy**

**Integrated Spectra** 



Walter et al. (2008) ApJ, V-136, P- 2563

#### Science Cases: HI in Galaxy



#### Moment Maps



Walter et al. (2008) ApJ, V-136, P- 2563

de Blok et al. (2008) ApJ V-136, P- 2648

#### Science Cases: HI Moments

- Use a cutoff to choose channels for moment maps.
- Average over channels and space first
- Spill over to nearby channels (from the good channels) even if the value is lower than cutoff





Spectral Line analysis II (M. P. Rupen), Synthesis Imaging in Radio Astronomy II

#### What we learned ?

- Observation and Techniques with interferometers
  - Observation Preparation [Nissim again!]
  - Calibration
     [AIPS: POSSM, BPASS, UVFLG]
  - Doppler correction
     [AIPS: CVEL]
  - Continuum Subtraction [AIPS: UVSUB, UVLIN, IMLIN]
  - Map making [AIPS: IMAGR]
- Science

[AIPS: ISPEC, MOMNT]