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Massive Stars, their evolution
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What 1s the main difference
petween average and massive stars
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\Vagnetic massive stars

Antares

luminosity (solar units)
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\Vagnetic massive stars

e Constitute 10% of the whole population (Grunhut et al. 201 7).

e Magnetic field: mostly dipolar, inclined to the rotation axis.
B

-~ Trigilio+04




MISSIoNS from magnetic
massive stars

e [hermal emission (F o)

e Non-thermal (Gyrosynchrotron) - interaction of the stellar wino
with the magnetic field.

e Non-thermal coherent - Electron Cyclotron Maser Emission
(ECME)- Electrons traveling through the middle magnetosphere
towards the stellar surface experience magnetic mirroring and a
l0ss-cone distribution Is produced.



ectron Cyclotron Maser
—MISSION

e Produces highly circularly polariseo Image Credit; Barnall
oulses, directed nearly perpendicular to

the magnetic field.

* Frequency of emission &« electron

gyrofrequency  higher frequency
originates closer to the star than the

——- 6GHz
lower freqguency. — 10GHz
15GHz
~ - — - 22GHz

44GHz

e Originates near the magnetic polar
regions- amplifies one of the two modes
- O and X modes - density constraints.



Coherent Emission

1.4 GHz Stokes |

e Trigilio et al. (2000) observed
the star CU Vir with the VLA at
1.4, 5, 8.4 anchliiciE R
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¢ |dentified as Electron Cyclotron
Maser Emission (ECME, also
observed from UCDs, e.g.
Hallinan et al. 2006,2007).

e O and X modes - density
constraints

Flux Density (mJy)




Coherent Emission

1.4 GHz : Stokes | :

e Trigilio et al. (2000) observed
the star CU Vir with the VLA at
1.4, 5, 8.4 anchliiciE R

>
E
>
=
N
c
O
a
>
L=
=

¢ |dentified as Electron Cyclotron
Maser Emission (ECME, also
observed from UCDs, e.g.
Hallinan et al. 2006,2007).

e O and X modes - density
constraints

Flux Density (mJy)




UGM

2| survey of magnetic
massive stars

e HD 133880 (PC+15, Das, PC+17). ® HD 12247 (to be conifirmed)

e HD 142990 (Das, PC+18, also e HR 5907 (Leto+18) + CuVir
reported by Lenc+18 independently)  (Trigilio+00)

e HD 35298 (Das,PC+19, nearly e Confirmed 5 ECME, tentative 6
ECME.

accepted)




ECME - constrains on
magnetc)sphere and plasma density

Image Credit: Barnali




—Nd stages of massive stars

Life Cycle of a Star
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White
» Dwarf
L Red Giant Planetary Nebula
Neutron Star
Stellar Nebula > > \
Massive Star '
e Supernova Black Hole

Supergiant

RAS 2019 Aug 19 Poonam Chandra



supernovae & gamma-ray burst




Circumstellar interaction

Explosion
—7 center

;ll;iumst L Circumstellar
= wind (1E-5

medium
density Msun/YT)

~1/r? : | ,,.5 Forward Shock
w ~10,000 km/s

Reverse Shock
~1000 km/s




DIvVersity In supernovae

Modjaz+16

He He
C+0 C+0 C+0
O+Ne+Mg O+Ne+Mg O+Ne+Mg




Gamma-ray bursts- collimated
eMmISSIoN

Gomboc 2009

Progenitor
(massive star)

External
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Internal
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Jet-pbreak
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[ hermonuclear supernovae - No
radlo emission so far!!l!

-ife Cycle of a Star
.. e ‘ | ) - A X
'- p’ l . 3 YL ‘ ; by
White == =
Red Giant Planetary Nebula . 3 =
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Red
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Crashing neutron stars can make gamma-ray burst jets

Simulation begins 7.4 milliseconds 13.8 milliseconds

15.3 milliseconds 21.2 milliseconds 26.5 milliseconds

Credit: NASAJAEI/ZIB/M. Koppitz and L. Rezzolla
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(Gravitational waves
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Radio emission from gravitationa
wave events (with N
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GW 170817 - rao
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GW 170817 - radio V

Radio Radio . Radio
emission emission emission

(A) On-axis jet (B) Off-axis jet (C) Choked jet (D) Choked jet (E) Successful hidden jet

SGRB and afterglow SGRB and afterglow Cocoon y-rays Fast ejecta afterglow Cocoon y-rays
and afterglow and afterglow

I | I
Ruled out Most likely Less likely




—Ladlio emissIion

mage Credit: Anna Ho




~CME

e lectrons gyrating In a magnetized plasma interacts with EM waves.
e Resonance condition: w=sQs/y+K|V|.

e Unstable electron distribution: in the process of restoring the stable
distribution, electrons get rid of the excess energy by radiation.

¢ lectrons traveling through the midadle magnetosphere towards the stellar
surface experience magnetic mirroring and a loss-cone distribution 1S
oroduced.

® | 0ss-cone distribution: one way 1o Induce instabllity, produced by magnetic
mirroring effect.

e Particle gets reflected it sin2(6)>Bo/B1, = magnetic mirroring



