Slow transient activities in Australia

Shivani Bhandari CSIRO/ATNF

VAST Pilot Survey

VAST is an open collaboration

- 6 pilot fields, 4 epochs

- 13 min/field/epoch = 250 μ Jy rms
- Concentration on areas with good reference images at multiple wavelengths, in addition to other ASKAP projects (e.g. EMU).
- Galactic and Extragalactic.
- 4 epochs with 3 months cadence epochs.

Flux Density (mJy)

Radio observing programs underway in LIGO O3

1) Australia Telescope Compact Array (ATCA) observing program

- 750 hours allocated over 5 semesters
- Strategy 1: galaxy targeting using CLU (Cook et al. 2017)
- Strategy 2: targeting candidate counterparts detected in other bands •
- Strategy 3: long term monitoring of counterparts •

2) Australian Square Kilometre Array Pathfinder (ASKAP) observing program

- 100 hours pilot survey for radio transients
- 100 hours GW time for follow-up when localization is poor

3) Murchison Widefield Array (MWA) observing program

- Automatic triggering with latency 10s to ~1 minute
 - May also search for long time scale afterglow weak at low freq.

VAST Ongoing Projects: RACS Historical Transient Search Examples

Left = SUMSS, Middle = RACS convolved, Right = RACS

VAST Serendipitous Discovery of PSR J1431-6328

RACS - observing strategy

Baselines	22m - 6400m	All 36 antennas
Resolution	15 arcsec	
Frequencies	700 - 1800 MHz	288MHz bandwidth
Integration	15 minutes	
Image noise	~250µJy	
Sky	-90 < δ < +40	903 tiles

OzSKA Nov 2019 I David McConne

 $\delta = +40 \deg$

Gravitational Wave Follow-ups

Using Indian facilities for transient follow-ups?

Credits: RACS team