

International Centre for Radio Astronomy Research

Fast Transients science in Australia

Jean-Pierre Macquart

THE UNIV WESTERN

THE UNIVERSITY OF WESTERN AUSTRALIA

FRB research: engagement & impact

FRB publications (P) and citations (C) wildly outperforming GRBs

Kulkarni 2018 Combines the interest of five disparate communities:

- i) **Radio** Pulsar and scintillation community
 - ii) **Optical** community for host IDs
 - iii) Stellar evolution: what are the progenitors of FRBs?
 - iv) Cosmology:
 - 1. "missing" baryons,
 - 2. baryonic feedback,
 - 3. gravitational microlensing by dark matter (due to extremely short timescale)
 - Theory how is their outrageously luminous emission generated?

Instrumentation – ASKAP

36x 12m dishes each equipped with a 30 sq.deg. field of view phased array feed (PAF)

Baselines up to 6km

Can operate in an

- ultra widefield fly's-eye non-localisation mode
- 30 sq.deg. interferometric mode + 3.2 second voltage buffer
 - localisations good to 0.1-0.2"
 - search mode is incoherent with ~1ms, 1 MHz resolution

Instrumentation – Parkes

The workhorse of Australian pulsar and fast transients astronomy

>6x the sensitivity of incoherent ASKAP 64 microsecond searches

CryoPAF upgrade planned will enable filled focal plane searches

Upgrade of the existing Molonglo telescope @ 843 MHz

Addition of N-S baselines to the existing E-W arm will give a 60"x45" synthesised beam

Estimated median position errors 1.5" (RA), 3" (dec)

z=0.321

VLT/FORS2 g'-band

5

Recent FRB results

The FRB landscape

CRAR

ASKAP population statistics

confirm both that there is both a correlation between DM and fluence, and that DM can be used as a proxy for distance.

Shannon et al., Nature 2018

Location, Location, Location

ICRAR

Halo! What halo?

Using FRBs as astrophysical tools

9

The next 3-5 years

- ASKAP's phased array feeds and localisation capabilities are a gamechanger
 - Opportunity to clean up a number of front-line cosmology problems
 - Solve baryonic feedback
 - Probe He EoR (maybe H EoR)
 - Solve the riddle of FRB emission using ultra-high time resolution data
- Coherent upgrade to ASKAP would increase detection rate by a factor >20
- Parkes PAF explore the fainter FRB population

A coherent ASKAP would dominate FRB science

Telescope & Mode	FoV (deg^2)	$1 \mathrm{ms} 10 \sigma$ sensitivity (mJy)	Relative Detection rate
$\sim 1 \mathrm{GHz}$ with $\sim 1''$ localisation			
ASKAP-8 ICS	30	8626	1.1
ASKAP-36 ICS	30	4066	5.4
ASKAP-30 Coherent	30	813	58.7
DSA-110 Coherent	9	853	16.8
MeerKAT Coherent	0.32	46	11.1
VLA	0.283	224	2.0
$\sim 1 \mathrm{GHz}$ with $> 40''$ localisation			
ASKAP-8 Flyseye	240	24398	1.0
ASKAP-36 Flyseye	1080	24398	4.5
CHIME	134	405	526.8
MeerKAT Flyseye	40.96	2936	14.6
PARKES	0.559	436	2.0

Table 1: A comparison of the relative detection rates of the various facilities. The detection rate, referenced to the ASKAP-8 fly's eye mode, is based on the measured integral source counts slope of $N(>F_{\nu}) \propto F_{\nu}^{-2.1}$ down to a fluence of 2 Jyms (see C. W. James et al. MNRAS, submitted) and a slope $N(>F_{\nu}) \propto F_{\nu}^{-1}$ for $F_{\nu} < 2$ Jyms. This shallow slope is implied by the observed Arecibo detection rate.