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Motivation

Accelerated expansion of the universe can be observed in the absence of dark
energy and modified gravity.

Nonlinear electrodynamics coupled to general relativity is investigated.
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Few basics of Cosmology

The homogeneous and isotropic universe is described by Friedmann- Robertson
-Walker(FRW) metric

ds2 = gµνdxµdxν = dt2 − a2(t)

[
dr 2

1− kr 2
+ r 2(dθ2 + sin2 θdφ2)

]
Where a(t) is the scale factor, k = 0,−1,+1 for flat, open and closed universe.
The Friedmann and Raychaudhury equations are,

H2 =

(
ȧ

a

)2

=
8πGρ

3
− k

a2
and

ä

a
= −4πG

3
(3p + ρ)

Here H
(
= ȧ

a

)
is the hubble constant, G the Newton’s constant, ρ and p being the

density and pressure of the matter-energy.
Assume that the universe is filled up with perfect fluid of density ρ and pressure p,
its energy-momentum tensor Tµν can be written as

Tµν = (ρ+ p)uµuν − pgµν

where uµ(= dxµ

dτ ) is the fluid world velocity, τ being the proper time.
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Few basics of Cosmology
The covariant conservation of Tµν gives the fluid equation of continuity

∇µTµν = 0→ ∂ρ

∂t
+ 3H(ρ+ p) = 0

Using p = ωρ (fluid equation of state) and solving the equation of continuity, we
find the scale factor a(t)

a(t) ∝

{
t

2
3(1+ω) , ω 6= −1 (radiation(RD) and matter(MD))

eHt = e
√

Λ
3 t , ω = −1 (cosmological constant(Λ))

Table: FRW solutions for the radiation and matter dominated universe(k = 0)

ω ρ(a) a(t) H(t) H(a) ρ(t) p(t)

MD 0 a−3 t2/3 2
3t

2
3a3/2 t−2 0

RD 1
3 a−4 t1/2 1

2t
1

2a2 t−2 t−2
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Inflationary Universe: Λ as the cosmological fluid

The universe, isotropic and homogeneous at large scale, requires exponential
accelerated expansion (de-Sitter expansion) → Inflation.
The Raychaudhuri eqn:

ä

a
= −4πG

3
(3p + ρ)

Condition for Inflation ä(t) > 0 which requires ρ+ 3p < 0 (violation of energy
condition).
The Friedmann equation with the cosmological constant(Λ) is

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
→ H2 =

(
ȧ

a

)2

' Λ

3

as the first and second terms fall rapidly as 1
a4 ( 1

a3 ) (for radiation(matter)
dominated universe) and 1/a2 at late time. Solving we find

a(t) = exp

(√
Λ

3
t

)
→ de− Sitter expansion
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Inflation and the solution of horizon and flatness
problem
Say, the cosmological constant(Λ) as a kind of cosmological fluid of energy density
ρΛ and pressure pΛ

ρΛ =
Λ

8πG
= constant→ ρ̇Λ = 0

The fluid equation of continuity for Λ is,

ρ̇Λ + 3H(ρΛ + pΛ) = 0 → pΛ = −ρΛ < 0

→ So, Λ gives rise negative pressure → Λ a kind of dark energy !
Solving Flatness Problem

For the exponential expansion a(t) = exp

(√
Λ
3 t

)
we find

| Ω− 1 |= k

a2H2
=

3k

Λ
exp

(
−
√

4Λ

3
t

)

where Ω = ρ
ρc

and ρc = 3H2

8πG (the critical density). This makes Ω→ 1 irrespective
of all subsequent expansion of the universe → thus the inflation solves the flatness
problem !
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Nonlinear Electrodynamics coupled to gravity
• In early universe, the strong and highly nonlinear electromagnetic field acts as
the main source of gravity!
• NLE field can mimic DE near the Planck scale which can drive inflation in early
universe.
The (non-minimal) action of nonlinear electromagnetic field coupled with gravity
is given by

S =

∫
d4x
√
−g

(
L+

1

κ2
R

)
where κ2 = 8πG and the lagrangian density (L) of nonlinear electrodynamics
(NLED) (Kruglov 2017)

L = − F
(βF + 1)2

' −F + 2βF2 +O(β2) + ...

Where F = 1
4 FµνFµν = 1

2 (B2 − E 2) and βF is dimensionless.
The Einstein’s equation and electromagnetic field equatios

Rµν −
1

2
gµνR = −8πGTµν , ∂µ

(√
−gFµν(βF − 1)

(βF + 1)3

)
= 0
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Tµν in NLED theory coupled to gravity
The energy-momentum tensor Tµν can be obtained as

Tµν =
2√
−g

δ(
√
−gL)

δgµν
= −gµνL+

(βF − 1)

(1 + βF)3
FµαF α

ν

The energy-momentum conservation gives

∇µTµν = 0→ ρ̇+ 3H(ρ+ 3p) = 0

The energy density(ρ) and pressure(p) of the electromagnetic field is obtained as

ρ =
(1− βF)E 2

(1 + βF)
+

F
(1 + βF)2

, p = − F
(βF + 1)2

+
(E 2 − 2B2)(βF − 1)

3(βF + 1)3

For the magnetic universe(where B = B(t) and 〈B〉 = 0 (the universe is isotropic)

and ~E = 0 as the average electric field E is screened by the charged primordial
plasma) consisting of fluid of density ρB(t) and pressure pB(t) are given by

ρB(t) =
2B2

(2 + βB2)2
, pB(t) = − 2B2

(2 + βB2)2
− 8

3

B2(βB2 − 2)

(2 + βB2)3
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Einstein equations in NLED theory
The Friedmann equation and Raychaudhuri equation for the universe filled up with
magnetic fluid are given by(

ȧ

a

)2

= H2 =
8πG

3
ρB =

8πG

3

2B2

(2 + βB2)2

ä

a
= −4πG

3
(3pB + ρB) = −4πG

3

4B2(2− 3βB2)

(2 + βB2)3

Solving the equation of continuity

dρB
dt

+ 3
ȧ

a
(ρB + pB) = 0

we find
dB(t)

dt
= −2B(t)

1

a(t)

da(t)

dt

Integrating this equation between t = t0 to t = t, we find

B(t) = B(t0)
a2(t0)

a2(t)
→ B(t)a2(t) = B(t0)a2(t0) (Magnetic flux conservation)
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Inflation in NLED theory coupled to gravity

The deceleration parameter q can be defined as (using the Friedmann and
Raychaudhuri equations)

q = −aä

ȧ2
=
ρB + 3pB

2ρB
=

2− 3βB2

2 + βB2
=⇒ B2 =

1

β

2− 2q

3 + q

We see B = 0 for q = 1 → which corresponds to no inflation as ä < 0.

B is singular for q = −3. This tells q lies in the range −3 < q < 1

Note that for q = −1, one finds

ä

a
−
(

ȧ

a

)2

= 0→ d

dt

(
ȧ

a

)
= 0→ ȧ

a
= H = const → a(t) = a0exp(Ht)

which corresponds to de-Sitter(inflationary) expansion. Here a0 is a constant.
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Inflation in Nonlinear electrodynamics
From the Raychaudhuri equation we see that the acceleration of the magnetic
universe ä(t) > 0 requires ρB + 3pB < 0 i.e.

2− 3βB2 < 0 =⇒ B >

√
2

3β

is required to drive inflation in the magnetic universe.
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(ρ
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3
P
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Figure: β(ρ+ 3p) is plotted against βB2.

1 β(ρ+ 3p) remains negative for a
wide range of βB2: it first decreases
and becomes minimum and then
rises again with βB2.

2 β(ρ+ 3p) is found to be minimum
at βB2 = 5.184.

3 The magnetic field plays a crucial
role in Inflation (as ä > 0 for
β(ρ+ 3p) < 0).
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Inflation in Nonlinear electrodynamics

Below βp (here p = pB) is plotted against βρ (here ρ = ρB).
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Figure: βp is plotted against βρ.

1 The magnetic energy density ρB is found to
be maxmium at ρmax

B = 0.25/β.

2 We also see that as βρB → 0.25 and
βPB → −0.25, β(ρB + pB)→ 0.

3 As β(ρB + pB)→ 0, from the equation of
continuity with ρ̇B = 0 we find

B =
√

2
β = constant during inflation.
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Inflation in Nonlinear electrodynamics
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Figure: βp is plotted against βρ.

1 From the Friedmann equation, it follows

H2 = 8πG
3

2B2

(2+βB2) = 8πG
3β = constant during

inflation.

2 Combining the Friedmann and Raychaudhuri
equations, one finds
ä
a −

(
ȧ
a

)2
= −4πG (ρB + pB). During

inflation ρB + pB = 0, → one finds

ä

a
−
(

ȧ

a

)2

= 0 → a(t) = c0eHt

the exponential acceleration(de-Sitter)
expansion! Here c0 is a constant and

H =
√

8πG
3β .
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Inflation in Nonlinear electrodynamics
1 During the inflationary phase, we find ρ = ρmax = constant and this gives the

magnetic field B =
√

2
β = 2

√
2 (ρmax)1/2.

2 In a typical inflationary model, where the reheating temperature

Treh ∼ ρ1/4
inf = 1016 GeV (the grand unified scale), the energy density at the

time of inflation is found to be ρinf = 1064 GeV4.
3 The magnetic field required to trigger the inflation is found to be

Bstart =

√
2

β
= 2
√

2(ρmax)1/2 = 2
√

2×1032× 1

2× 10−20
Gauss ∼ 1052 Gauss

where, 1 Gauss = 2× 10−20 GeV2.
4 The e-fold number N required for inflation

N = ln
aend
astart

= ln

√
Bstart

Bend

For N = 70 (say), one finds e2×70 = 1061 = 1052

Bend
from which gives

Bend = 10−9 Gauss. at the end of inflation.
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e-fold number(N) from horizon problem solution

To explain the horizon problem, the largest scale observed today
λ(t0) = 1/H0 should be within the horizon at the beginning of inflation

1

a0H0
<

1

aiHi
→ 1

H0

af
a0

ai
af

<
1

Hi

Noting ai/af = e−N and the photon temperature(T ) drops as T ∝ 1/a, one
can write af /a0 = T0/Tf where T0 is the CMB temp. today and Tf is the
temp. after reheating, we find

1

H0

T0

Tf
e−N <

1

Hi

The e-fold number N can be calculated as

N > ln

(
T0

H0

)
+ ln

(
Hi

Tf

)
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e-fold number(N) from horizon problem solution

Since B ∝ 1/a2 and T ∝ 1/a, B ∝ T 2, we find N as

N > ln

(√
B0

H0

)
+ ln

(
Hi√
Bf

)
At present B0 = 10−10 G (∼ 10−30 GeV2) and the present Hubble parameter
H0 = 10−42 GeV. This gives

N > ln

(
10−15

10−42

)
+ ln

(
Hi√
Bf

)
' 62 + ln

(
Hi√
Bf

)
A knowledge of the magnetic field B and the Hubble parameter H allows us
to estimate N, the e-fold number.

CMB observation suggests N ' 60− 70 for inflation.
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Exit from eternal inflation

The deceleration parameter q lies in the range −3 < q < 1. B is singular at
q = −3 and q = −1 corresponds to de-Sitter or exponential acceleration. As
q moves from q = −1 to q = 1 region in the course of universe expansion, B
varies from B =

√
2/β to B = 0.

As B → 0 (for q → 1) at the end of inflation, ä < 0, the acceleration of the
universe (i.e. inflation) stops → graceful exit from inflation !

Hence, in NLED theory there is no exit problem for inflation!

Prasanta Kumar Das (BITS Pilani) Nonlinear electrodynamics: a model of inflationary universe November 13, 2019 21 / 33



Presentation Outline

1 Motivation

2 Basic Equations

3 Nonlinear electrodynamics and inflation

4 Conclusion

5 Cosmic magnetism and Square Kilometer Array

Prasanta Kumar Das (BITS Pilani) Nonlinear electrodynamics: a model of inflationary universe November 13, 2019 22 / 33



Conclusion
The Friedmann and Raychaudhuri equations in the early universe dominated
by strong and highly nonlinear magnetic field coupled to gravity are obtained.

The role of magnetic field in inflation is highlighted from the deceleration
parameter q and the condition for acceleration ä > 0 on is obtained by
setting ρB + 3pB < 0 (from Raychaudhuri equation).

The fact that the magnetic energy density ρB remains constant during

inflation gives the magnetic field B =
√

2
β = 2

√
2(ρmax)1/2 ∼ 1052 Gauss,

where ρinf = ρmax = 1064 GeV4 assuming the reheating takes place at

Treh ∼ ρ1/4
inf ∼ 1016 GeV, the GUT scale.

Assuming that the magnetic field driven inflation will produce the e-fold
number N = 70, the magnetic field at the end of the inflation is found to be
Bend = 1052 × e−2N (N = 70) = 1052 × 10−61 = 10−9 Gauss.

Horizon problem solution for B0 = 10−10 Gauss and H0 = 10−43 GeV,
predicts the e-fold number N

N > ln

√
B0

H0
+ ln

Hi√
Bf

∼ 62 + ln
Hi√
Bf

There is no exit problem in magnetic field driven inflation.
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Cosmic magnetism and Square Kilometer Array

The estimated magnetic field 10−9 Gauss that we obtain at the end of
magetic field driven inflation can compete with the field produced by Active
galactic nuclei and violent star-formation activity or the field produced at the
galaxy formation time at z ∼ 5.

The SKA can provide into the origin, evolu- tion and structure of cosmic
magnetic fields.
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Big bang cosmology - the Horizon Problem

1 The cosmic microwave background radiation(CMBR) spectrum suggests that
the universe at the large scale is isotropic and homogeneous.

2 The inhomogeneities (gravitationally unstable which grows with time) of the
CMBR spectrum were much smaller in the past (at the time of last
scattering) than today.

3 The conventional big bang picture of the early universe (e.g. the CMB at last
scattering) consists of a large number of causally-disconnected region
(patches) of space of similar physical conditions.
Q. Why the universe was so homogeneous at the times of last scattering than
it is now? No dynamical reason.

4 The homogeneity problem is often referred to as the horizon problem.
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Big bang cosmology: the Flatness Problem

The Friedmann equation(for k 6= 0) can be written as

| Ω− 1 |= k

a2H2

where Ω = ρ
ρc

and ρc = 3H2

8πG (the critical density). So, we find Ω = Ω0 = 1 if

k = 0 i.e. the universe is flat which agrees with the WMAP data |Ω− 1| < 0.02
→ the universe is flat.
In big bang cosmology (for k 6= 0) one finds

|Ω− 1| ∝

{
t radiation dominated universe

t2/3 matter dominated universe

So any small departure of k = 0, will drive Ω away from Ω0 = 1 in big bang
cosmology → requires extreme fine tuning at k = 0 for Ω = 1. This is the flatness
problem.
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Big bang cosmology - the Horizon Problem

The comoving horizon is defined in terms of casual horizon or maximum distance
travelled by a light ray from time 0 to time t.

τ =

∫ τ

0

dτ ′ =

∫ t

0

dt ′

a(t ′)
=

∫ a

0

da

Ha2

where, (aH)−1 is comoving Hubble radius which can be evaluated with ω as,

(aH)−1 = H−1
0 a

1
2(1+3ω)

The causal horizon for radiation dominated(RD) and matter dominated(MD)
universe

τ =

∫ a

0

da

Ha2
∝

{
a RD

a1/2 MD

The comoving horizon grows monotonically with time → the comoving scale
entering into the horizon today have been far outside the horizon at CMB
decoupling.
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Solving horizon and flatness problem

1 Solving Horizon Problem
If the particles are separated by distance greater than Hubble radius (aH)−1

then they can not communicate with each other now.
Solving Flatness Problem

For the exponential expansion a(t) = exp

(√
Λ
3 t

)
we find

| Ω− 1 |= k

a2H2
=

3k

Λ
exp

(
−
√

4Λ

3
t

)

This makes Ω→ 1 irrespective of all subsequent expansion of the universe.
Thus the inflation solves the flatness problem.
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Scalar Field Dynamics
The action of the inflaton scalar φ coupled to gravity is

S =

∫
d4x
√
−g

[
1

2
R +

1

2
gµν∂µφ∂νφ− V (φ)

]
For flat(k = 0) FRW space time the energy density and pressure is given by,

ρφ =
1

2
φ̇2 + V (φ), pφ =

1

2
φ̇2 − V (φ)

For the homogeneous scalar field φ(t), the acceleration ä > 0, if ρφ + 3pφ < 0 and
pφ < 0, which will follow if

V (φ) >
1

2
φ̇2

Thus the potential is flat on which the inflaton rolls extremely slowly.
The dynamics of φ(t) and the Friedmann equation is given by

φ̈+ 3Hφ̇+
dV

dφ
= 0, H2 =

8πG

3

[
1

2
φ̇2 + V (φ)

]
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Slow-roll parameters
The slow roll parameter is defined as

ε ≡ 3

2
(ωφ + 1) =

1

2

φ̇2

H2

where ωφ = pφ/ρφ = −1 (when V (φ) > 1
2 φ̇

2) , ε is related to the evolution of
Hubble parameter H

ε = − Ḣ

H2
= 1− aä

ȧ2
= −d ln H

dN

Where dN = Hdt (N, the e-fold number). The acceleration(ä > 0) of the universe
occurs if ε < 1.

The second slow-roll parameter is
defined as

η = − φ̈

Hφ̇
= ε− 1

2ε

dε

dN
→| η |< 1

| η |< 1 ensures change in ε per e-fold is
small.
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Slow-roll Inflation

In slow roll regime ε, | η |� 1 and the Hubble eqn and scalar field eqn. become

H2 ≈ 8πG

3
V (φ) ≈ constant. φ̇ ≈ − 1

3H

dV

dφ

Inflation ends when ε(φend) = 1 and η(φend) = 1.The number of e-fold(N) before
the inflation ends is

N(φ) = ln
(aend

a

)
=

∫ tend

t

Hdt =

∫ φend

φ

H

φ̇
dφ ≈

∫ φ

φend

V

V,φ
dφ

olution of flatness (and horizon) problems require the total e-fold number(Ntot)
exceeds about 60 i.e.

Ntot ≡ ln
aend
astart

≥ 60

The fluctuations observed in CMB corresponds N = 40− 60 number of e-folds
before the end of Inflation.
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