Progress report on GMRT AW-projection

Dharam V. Lal

P. Jagannathan

Sanjay Bhatnagar (NRAO)

17 1

Srikrishna Sekhar

Russ Taylor

(UCT-IDIA)

D. Oberoi S.N. Katore

C. Pr

Ishwara-Ch. C.H.

(NCRA-TIFR)

THE PROBLEM

- Antenna PBs can be rotationally asymmetric in the parallel hand correlations.
- Alt-Az mounted antennas rotate, and these rotations cause an apparent variation of source flux density.
- Polarisation leakage beams are inherently asymmetric, systematic errors in off axis polarisation.

PRIMARY BEAM EFFECTS

- For point sources, most of the times, things are fine.
- What if the source you are looking at is extended compared to the telescope beam?
 - The instrumental beam effects that can confuse the measurement of extended polarised signals, e.g.,
 - Squint
 - Squash

PRIMARY BEAM EFFECTS

- For point sources, m
- What if the source y compared to the tele
 - The instrumental 1 measurement of e
 - Squint
 - Squash

PRIMARY BEAM EFFECTS

- For point sources, most of the times, things are fine.
- What if the source you are looking at is extended compared to the telesco
 - The instrumental bear $\frac{10}{0}$ measurement of exter $\frac{10}{10}$
 - Squint
 - Squash

STOKES PARAMETERS

- *I* total intensity and sum of any two orthogonal polarisations
- Q & U completely specify linear polarisation
 - V completely specifies circular polarisation

•
$$RR = \mathscr{A}(RR)e^{i\psi RR} = I + V$$

• $LL = \mathscr{A}(LL)e^{i\psi LL} = I - V$

•
$$RL = \mathscr{A}(RL)e^{i\psi RL} = Q + iU$$

• $LR = \mathscr{A}(LR)e^{i\psi LR} = Q - iU$

STOKES PARAMETERS

- *I* total intensity and sum of any two orthogonal polarisations
- Q & U completely specify linear polarisation
- V completely specifies circular polarisation
- Stokes parameters (as percentages of *I*)
- Is it really that simple?
 - No, there are leakages...
 - The total intensity can leak into the polarised components (*I* into {*Q*,*U*,*V*}).

MUELLER MATRIX

 The leakage of each polarisation into the other can be measured and quantified in a 4 × 4 matrix (Mueller 1943).

$$M = \begin{bmatrix} m_{II} & m_{IQ} & m_{IU} & m_{IV} \\ m_{QI} & m_{QQ} & m_{QU} & m_{QV} \\ m_{UI} & m_{UQ} & m_{UU} & m_{UV} \\ m_{VI} & m_{VQ} & m_{VU} & m_{VV} \end{bmatrix}$$
$$\begin{bmatrix} RR + LL \\ RL + LR \\ RL - LR \\ RR - LL \end{bmatrix} = \begin{bmatrix} m_{II} & m_{IQ} & m_{IU} & m_{IV} \\ m_{QI} & m_{QQ} & m_{QU} & m_{QV} \\ m_{UI} & m_{UQ} & m_{UU} & m_{UV} \\ m_{VI} & m_{VQ} & m_{VU} & m_{VV} \end{bmatrix} \cdot \begin{bmatrix} I \\ Q \\ U \\ V \end{bmatrix}$$

MUELLER MATRIX

- VLA Mueller and Jones matrices
 - Obtained by Fourier Transforming the PB Holography measurements

MUELLER MATRIX

- VLA Mueller and Jones matrices
 - Obtained by Fourier Transforming the PB Holography measurements

Z-axis channel/frequency

MEASUREMENT EQUATION

MEASUREMENT EQUATION

$$\overrightarrow{V}_{ij}^{Obs}(\nu,t) = G_{ij} W_{ij}(\nu,t) \int P_{ij} M_{ij}(s,\nu,t) \overrightarrow{I}(s,\nu) e^{i\overrightarrow{b}_{ij}.\overrightarrow{s}} d\overrightarrow{s}$$

r

$$= W_{ij}(\nu, t) \left[A_{ij} \star \overrightarrow{V}_{ij} \right]$$

where,
$$A_{ij} = A_i \otimes A_j^*$$

 $A = A_i \otimes A_j^*$
 $A = A_i \otimes A_j^*$

APERTURE ILLUMINATION PATTERN

- Holography data: MeerKAT
 - Obtained by Fourier Transforming the PB Holography measurements

APERTURE ILLUMINATION PATTERN

UGMRT DATA

- Holography data
 - scans/data as a function of time

UNDERSTANDING DATA

- Holography data
 - scans/data as a function of time
- construct (Stokes) image/beam
- Understanding the polarisation properties of the GMRT dish is fundamental ...
- need for
 - "accurate aperture model"
 - casa implementation

UNDERSTANDING DATA

- Holography data
 - scans/data as a function of time
- construct (Stokes`
- Understanding th is fundamental ...
- need for
 - "accurate apert for a casa implement"

Frequency (GHz)

UGMRT DATA (BAND-4, 648 MHz)

- Holography data
 - scans/data as a function
- construct (Stokes) image
- Understanding the polari is fundamental ...
- need for
 - "accurate aperture mode 40 -
 - casa implementation
 - PB Jones matrices!

PUTTING THIS ALL TOGETHER

- In the end what we are trying to do is relate products from our correlator to the intrinsic polarised radiation from the source.
- So, we are correcting the raw correlator outputs for
 - imperfections in the receiver (leakages).
 - The orientation of the receiver with respect to the telescope structure.
 - The changing parallactic angle.
 - Any measured propagation related polarisation effects (e.g. Faraday rotation).