

Wide Band Digital Tile Processing System for Low Frequency Array

Srivani K.S.

Raman Research Institute Bengaluru

13-15 Nov 2019, ARDRA Meeting Lonavala, Pune

This talk is partitioned in to 3 segments:

- 1. Technology development of Digital Receivers at RRI- MWA, SARAS etc
- 2. Technology development at RRI towards Sky Watch Array Network
- 3. Possible future technology for future telescopes : SKA, MWA Phase 3

The focus of this talk is on Digital Tile Processors

Technology development of Digital Receivers at RRI

at

A full 300 MHz bandwidth (PA)mode for

Gauribidanur Radio Observatory(GBD)

8 tiles combined at each station

studies

pulsar/transient

RRI participation: National and International Telescopes A precursor for the SKA - Murchison Wide Field Array (MWA)

- 2048/4096 dual-pol dipole antennas
- Operates from : 80-300 MHz
- Processed bandwidth : 30.72 MHz

Prabu, Srivani, Kamini, Madhavi, Goplakrishna, Anish Roshi, UdayaShankar, Avinash Deshpande and Ravi Subrahmanyan & Collaborators

Spectrometer for DISTORTION experiments

A venture to experimentally verify signatures from the early universe \rightarrow Precision Receivers

precision SPECtrometer (pSPEC)

PRATUSH - Space based venture Probing ReionizATion of the Universe using Signal from Hydrogen **Kintex-ultrascale space grade** FPGA-XQRKU060 and 12/14 bits **ADCs**

Epoch of Recombination

2GHz Hybrid Correlation Spectrometer

- \Box 2 GHz, 8K channels \rightarrow GTX1050 using and Virtex-6 FPGA in burst mode
- □ Real-time GPU system using state-of-the-art P100/V100 GPUs and powerful work-station

Details in

Girish Talk

Girish, Srivani ,Ravi Subrahmanyan, UdayaShankar N.

- Digitization of bandwidth 250MHz/2GHz
- Industry : Fabrication & assembly of boards and RF Shielded Enclosure
- Hardware, Firmware & System development \rightarrow in-house •

Girish, Srivani, Madhavi		SARAS/ APSERa
	RF BW range	40 - 250 MHz/2GHz
<u> (A kom</u>	channelizer	16K / 1K
0 6 M RESOLUTION IN		Correlation Spectrometer
	On-chip intg	61 ms/16.77ms
CADAC	Sensitivity	1 part in 10 ⁵ /10 ⁵⁷
SARAS	Power	150W/ 250W
Digital Spectrometer	ADC	EV10AQ190CTPY QUAD 10-bit, ABW~3GHz/5 Gsps ASNT7120A- single core, 4-bit ABW~20GHz, Fs: DC-15GSps
	FPGA	FPGA : XC6VSX315T

Technology development \rightarrow The Indian SWAN (Sky Watch Array Network)

- **Science:** conduct searches and studies of fast transients, pulsars etc.
- Aim to Enhance Indian observing capabilities in radio
 - Build & nurture future generations of talented radio astronomers in India
 - To facilitate hands-on experience to a large number of students
 - Direct & active participation, starting from design stage to competitive research using SWAN in Desh's talk

□ Phase 0 → As a proof-of-concept/demonstrator system:

- A 7-station system, using small tiles (based on MWA design)
- Modified Receiver hardware from RRI-GBT Multiband system (MBR) is successfully configured at the Gauribidanur Telescope Field Station
- The MBR is currently being characterized & tested in a tied-array mode.
- Eventually the 7-station system will be deployed at various institutes across India.

Team:Vinutha Chandrashekar, K. B. Raghavendra Rao[,] Rahul Kinger, H. A. Aswathappa, P. S. Sasikumar, T. S. Mamatha¹ Bhawana Bansal, Harsh Grover[,] H. N. Nagaraja¹ Sandhya¹, Indrajit Barve and A. Deshpande¹

7-Tile Array at Gauribidanur Radio Telescope Observatory- Phase -0

Team:Vinutha Chandrashekar¹, K. B. Raghavendra Rao¹, Rahul Kinger¹, H. A. Aswathappa¹, P. S. Sasikumar¹, T. S6 Mamatha¹, Bhawana Bansal², Harsh Grover³, H. N. Nagaraja¹, Sandhya¹, Indrajit Barve⁴, and A. Deshpande¹

SWAN System configured for Concept Demonstration – Phase 0

- Initiation of a collective effort to develop the SWAN with as many as science institutes i.e. the (IIT, NIT, IISER)s, and some universities across India.
- At present, remote access of the system existing in Gauribidanur radio field station, from respective parent institutions/universities.

$\Box Phase 1 \rightarrow$

- Design, develop and use a wide-band (50 MHz 500 MHz)-interferometric array of antenna across different parts of India
- The front-end Rx system can handle four input RF signals without frequency down-conversion.
 - Low noise, high gain receiver chain, capability to reject the FM band and avoid saturation
- Direct digitization with Instantaneous bandwidth of 175MHz each
- The digital correlator receiver has 8 independent channels with high-speed ADC and Virtex-6 FPGA.

PHASE -1 Receiver System

A wide-band low noise amplifier with FM rejection and first level band limiters A High gain broadband RF amplifier A band-pass micro-strip filter for band shaping the RF signal for further digitization.

- 4 such chains form wide band receiver system for SWAN
- Designed and built inhouse

KBR, Arasi, Sandhya, Nagaraj and Desh

ARDRA Meeting

An eight input digital receiver consists of :

- A general purpose platform consisting of high-speed Quad ADCs and Virtex-6 FPGA forms the Digital backend receiver for SWAN.
- Full Stokes Correlator with 1024 spectral channels over a bandwidth of about 350 MHz

	SWAN Wide Band
RF BW range	5-500MHz
channelizer	2K
On-chip intg	23.87 ms
Power	75W
ADC	EV10AQ190CTPY QUAD
	10-bit, ABW~3GHz/5 Gsps
FPGA	FPGA: XC6VLX240T
Spectral Resolution	170 kHz
	Full STOKES correlator
Data-rate	21MBytes/sec

ARDRA Meeting

Srivani, Kamini, Nagaraj and Desh

Rx system sub-band 1 and 2 output

Current Status :

- Laboratory tests with integrated analog receiver is in progress
- Eventually will be interfaced to MWA Tiles @ GBD for sky observations.

Integrated Digital Receiver Front-Rear view

- 24 complex & 8 self products in a single chip
- Resource utilization is less than 50%
- Frequency of operation is 350 MHz
- Can be configured as
 - 1. 2 antennas dual pol- 375MHz BW
 - 2. 4 antennas single pol-375 MHz BW
 - 3. 4 antennas dual pol- 175MHz BW
 - 4. 8 antennas single pol- 175MHz BW

FPGA signal processing and data packetization architectures

Channelization algorithms

Total power & channelized power detection Monitor and Control & Optical fiber interface

Complex design- Meeting timing closures(163.84MHz, 250MHz, 350MHz) inside FPGAs

Technology development world wide → LFAA-SKA

Tile Processing Module

- 16 dual i/p, 14-bit JESD ADCs, AD9680/1Gsps
- Two FPGAs Xilinx Kintex XCKU040
- Two, 40 GbE Fiber link(QSFP)
- 96-bit wide bus to 1 Gigaby

INAF Italy and collaborators

Challenges of LFAA

- Digitizing 131,072 antennas
- Digital signal processing and modelling
- Tile & Station beamforming
- Large bandwidths
- Large data,Power , Size and Cost
- Mass production, Deployment
- Maintenance, Serviceability
- Remote site conditions
- 1 TPM can handle 1 Tile \rightarrow 16 dual pol antennas
- 1 station requires 16 TPMs
- 512 stations will have 8192 TPMs
- Current Technology with discrete devices

Future technology \rightarrow RFSoC (M-MIMO)

Powerful Combo of 4 technologies

- **RF Data converters**
- **Programmable Logic FPGA**
- Processor
- **SerDes interface**
- **Use cutting-edge technology**
- **Compact design**
- **PCB design is challenging**

1TPM can handle 1 Tile

One station \rightarrow 16 TPMs

512 Stations will have 8192 TPMs

At RRI : Design and development of RFSoC based Digital Tile Processor

Frequency Domain Acceleration for SKA

MEMORY

FP DSP

FPGA

Bridging Activity
 Development of Accelerator Tile
 Processor using state-of-the-art
 RFSoC and floating point FPGAs

With industry participation

FIRMWARE: HiSpeed & Algorithms Power and Cooling: 100-150W Signal Conditioning: Optical interface Timeline: ~18 – 24 Months

UP TO 16

RFoF

Gen 1/II

12 bit/16Ch/2GSPS

XCZU29DR Zynq® UltraScale+™ RFSoC

Fiber

to RF

AMP

7

MEMORY

ADC

Integrated

FPGA

 \subset

PCIe interface to server

PCIe 3.0/4.0/5.0

1/2/4 GB/s

SKAIC Bridging proposal / Industry engagement SKAIC Members FPGA team

F - I - M series

M20K 5000+

6/12 TFLOPS

DSP 4000+

AGF 012 intel® Agilex™

Ethernet

10G-25G-50G-100G

SFP+ SP28 QSP28

Prabu and SKA PSS Team

SUMMARY

- Relevant expertise, collaboration, industry contacts, infrastructure & capabilities to build high precision, wide bandwidth Digital Receivers
- □ A collective effort to develop the SWAN with as many as science institutes/universities → realised using Narrow band and Wide band systems
 □ RFSOC BASED DIGITAL RECEIVERS →
 - □ Future Technology for Tile Processors for LFAA of SKA, MWA Phase 3
 - RRI is embarked upon development of Future Tile processors

Looking forward for active collaboration and participation in future telescopes : SKA-Low and MWA Phase 3

FPGA

Acknowledgements:

Electronics Engineering group at RRI Mechanical Department at RRI Gauribidanur Observatory

SWAN Team DISTORTION Team MWA Team