Galactic Center Scattering, Pulsars, and Astrometry

> Geoffrey C. Bower (ASIAA, Hilo)

Galactic Center Pulsars

- 1. General Relativity and Black Hole Physics with Sgr A*-bound Pulsar
- Star-formation, Stellar Death, Dynamical Evolution, Dark Matter within the Central Molecular Zone
- 3. Interstellar Medium, Turbulence, Magnetic Fields within the Central Molecular Zone

Using Pulsars to Measure Spacetime Around Sgr A*

Liu et al 2012

The Nobel Prize in Physics 2020

© Nobel Media. III. Niklas Elmehed.

Roger Penrose

© Nobel Media. III. Niklas Elmehed.

Reinhard Genzel

© Nobel Media. III. Niklas Elmehed.

Andrea Ghez

Event Horizon Telescope

Strong Evidence for a Black Hole

Event Horizon Telescope Imaging

Shiokawa et al

Arches cluster -

Cavity excavated by heavy stars Milky Way centre

Quintuplet cluster

HST & Spitzer: Wang, Stolovy et al 2015

- WR+OB Stars
- T~2.5 5.8 Myr
- M~10⁴ M_{sun}

Paumard et al 2006, Lu et al 2013 J_{-4}

• 10³ pulsars with P < 100 y Pfahl & Loeb 2004

Known GC Pulsars

PSR	P (ms)	B (10 ¹² G)	DM (pc cm ⁻³)	τ _{sc} (2 GHz; ms)
1746-28501	1077	38	962	100
1746-2850II	1478	3	1456	145
1745-2910	982		1088	
1746-2856	945	4	1168	
1745-2912	187		1130	144

Johnston et al. 2006 Deneva et al. 2009

Scattering Inhibits Imaging & Pulsar Detection

Haggard & Bower, Sky & Tel, 2016

Angular Broadening of the Pulsar

Temporal Scattering

A New Distance for the GC Scattering Screen

Hyperstrong Scattering

1400 MHz Pseudo-Luminosity $(\mathrm{mJy} \ \mathrm{kpc}^2)$ 1000 100 10 1 0.1 VLA: $\nu = 3.0 \text{ GHz}, \Delta \nu = 1.5 \text{ GHz}, T = 6.0 \text{ hr}, \delta t = 64 \,\mu\text{s}$ VLA: $\nu = 10.0 \text{ GHz}, \Delta \nu = 4.0 \text{ GHz}, T = 6.0 \text{ hr}, \delta t = 64 \,\mu\text{s}$ VLA: $\nu = 15.0 \text{ GHz}, \Delta \nu = 6.0 \text{ GHz}, T = 6.0 \text{ hr}, \delta t = 64 \,\mu\text{s}$ 0.01 0.1 10 Spin Period (s)

MSPs not detectable

Key Probes of the GC Scattering

- Pulsar scattering
- OH/IR Stellar Masers
- Extragalactic background sources

Other GC Pulsar Scattering Indicates Complex, Patchy Scattering

Dexter et al 2017

OH/IR Stars

Van Langevelde+ 1992

Extragalactic Background Sources

Lazio & Cordes 1998, Lazio et al 1999

The GC Pulsar Likely Originates in the Clockwise Stellar Disk

- V_{proj}=240 +/- 3 km s⁻¹
- R_{proj}=0.097 pc
- P>700 y

VLBA+Y1 Astrometry

Summary

- Missing Galactic Center pulsars is an ongoing and significant Problem
 - Gravity
 - Star-formation, stellar death
 - ISM
- Characterization of the large-scale GC scattering medium and pulsar problem is key to understanding and may be key for discovery of a Sgr A*-bound pulsar
- How unique is the GC scattering?
- High-sensitivity at long wavelengths will be powerful