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• The only source of information - the tiny amounts of radiation incident on the 
telescopes
– You can only ‘observe’ not ‘experiment’
– Observations + laws of physics + logic

• Telescopes tend to be marvelous feats of engineering 
– The most detailed characterisation of light possible  
– Measure very faint signals with very high accuracy

• Detective work – the art and science of logical deduction

• Over the years we have learnt an amazing amount about our grand universe from 
analysing a minuscule amount of light which happens reach our vantage point.

• Important lessons in humility and unity – The Pale Blue Dot  

Astronomy: A personal perspective



Andromeda: Our nearest galactic neighbour

Image credits: Radio: WSRT/R. Braun; Infrared:NASA/Spitzer/K. Gordon; 
Visible: Robert Gendler; Ultraviolet: NASA/GALEX; X-ray: ESA/XMM/W. Pietsch

http://www.astron.nl/
http://gallery.spitzer.caltech.edu/
http://www.robgendlerastropics.com/
http://www.galex.caltech.edu/
http://xmm.esac.esa.int/
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Karl Jansky: The Birth of  Radio Astronomy 

World’s first radio telescope  (20.5 MHz, circa  1936)



Beam size and Resolution
● Size of the main lobe in 

radians  ~λ/D
● λ is the wavelength
● D is the diameter
● Better resolution requires

– Shorter wavelength 
(higher frequency)

– Bigger telescopes



Radio Telescope: Basics
● Like your satellite dish... only more challenging : 

Celestial radio signals are VERY weak  (& there is 
corruption due to noise !) ;  unit of  flux  used is : 
1 Jy = 10 –26 W m-2 Hz-1

● Input  radio power  into a typical telescope is   ~ 
-100 dBm ! (would take 1000 years of continuous 
operation to collect 1 milliJoule of energy !!)

● For high sensitivity  (to see faint sources out to 
the distant reaches of the Universe) :   
– large dishes (several 10s of metres in diameter)
– high quality, low noise electronics in the receivers 
– large bandwidths of observation 
– long integration times 



What a variety!

f ~ 100 GHz,  λ ~ 0.003 m
Diameter = 12 m
Surface: s  = 25 μm
Pointing: Δθ = 0.6 arcsec
Carbon fiber & invar  reflector
Solid and heavy support members
Pointing meteorology structure 
              inbuilt

f ~ 1 GHz,  λ ~ 0.3 m
Diameter = 45 m 
Surface:  s = 5 mm 
Pointing: Dq = 1 arcmin
Wire mesh reflector
Light weight support structure

No special pointing structure

F ~ 0.1 GHz,  λ ~ 3 m
A collection of dipoles (4x4 = 16) 
No curved surface
No moving parts, 
Electronic pointing



The quest for resolution: Interferometry
● Resolution ~ 

●    - wavelength of observation
●    - size of aperture (diameter of lens/mirror)

● 1arc sec resolution requires D ~2x105 
–   = 8000 Å;   D = 16 cm
– For radio waves     ranges from 0.5 mm to 10 km → D ~100 m to ~2x103 km

● Impossible to build apertures of required dimensions and surface 
accuracy

● Interferometry - resolutions corresponding to the separation 
between the elements (telescopes)



The Concept Behind an Interferometer
● The important property of a parabolic dish is that it adds 

parallel light rays coherently

● Parallel rays (from infinity) have equal path lengths to the 
focus, so they all arrive in phase

● This is still true if we remove segments of the parabola – 
remaining rays still reach focus in phase

● Now imagine moving the remaining segments of the dish off 
the surface of the paraboloid

● So long as we know very precisely where the segments are 
located, we can delay their signals appropriately and still 
add them together coherently

● This, in essence, is what an interferometer does

Images: wikipedia



It ensures that the optical path lengths from all points on a plane wavefront (perpendicular to the 
optical axis) to the focal point are the same.

Imaging with a lens (mirror)



Mathematically, a lens performs a Fourier Transform of the incident wavefront   
    

E(x,y)  E’(,) 

A characteristic of optical imaging 
systems

• Transfer function / Point source 
response / Point spread function 
(PSF) -  Airy pattern 

• Resolution = 1.22 /D

A more sophisticated perspective



Imaging with an unfilled aperture
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Young’s double slit experiment



Screen/Detector  
Correlator

Slits  
Telescopes

Phase 
comes from 
the (sum of) 
geometric 
path length, 
optical fiber, 
cables and 
electronic 
delays

Reciprocity 
theorem 

Two element inteferometer



The u-v plane, except that units on the 
axes should have been , not length

NBaselines = N(N-1)/2

(uij, vij)

(-uij,-vij)

u () 
v 

(
)

Baselines and uv plane



Cos 2π(ul + vm); 
u,v – components of the baseline; l,m – coordinates in 

image plane

Sky response of a baseline



• ‘Baselines’ from N elements – N(N-1)/2

• Each of these will lead to a ‘fringe’ with 
different orientation and spacing

• The final response of the interferometer 
will be the superposition of fringes from 
all the baselines

An N element interferometer



Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA
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VLA     - 27 antennas  351 baselines

GMRT - 30 antennas  435 baselines

MWA – 128 elements 8,128 baselines

Synthesis imaging



Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA
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The fundamental Radio Astronomy measurable 

van Cittert Zernike Theorem
V(u,v) is 2D Fourier Transform of the sky 
Brightness distribution B(,) 

(T(x,y) in the following slides)
• Incoherent source,
• Small field of view
• Far-field 

Visibility – V(u,v)



Rayleigh-Jeans Law and Brightness 
Temperature

At radio wavelengths

Planck’s law

W m-2 Hz-1 sr -1

W m-2 Hz-1 sr -1

In this regime, the Plank’s law reduces to the Rayleigh-
Jeans Law



Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA
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Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA



Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA



•Brightness distribution in the sky is Fourier transform of the 
Visibilities

B(,)  V(u,v)
         V(u,v) – The quantity measured by a baseline (amplitude, phase / real, 

imaginary)
• In the uv-plane, we measure visibilities only at a few places i.e. we 
have a sampling function

S(u,v) = k (uk, vk)
•Point source response of an interferometer (PSF) is Fourier 
transform of S(u,v). It is also known as Point-Spread-Function or 
Dirty Beam

P(,)  S(u,v)

The mathematical basis



• The outcome of any measurement is the convolution of
– The true measurable – the sky brightness -
– The response function of the instrument (PSF)

• Referred to as the Dirty image 
– FT of the measured visibilities
– Convolution of the PSF and the true sky brightness distribution

• To get true sky brightness distribution, one needs to
– ‘deconvolve’ the PSF from the dirty image
– ‘calibrate’ out the antenna response

Putting it all together...



Radio Telescopes: Interferometers



Giant Metrewave Radio Telescope
● GMRT is a world class facility for studying astrophysical 

phenomena at low radio frequencies  (150 to 1450 MHz)
● Designed and built primarily by NCRA, during the 1990s.  
● Array telescope consisting of 30 antennas of 45 metres 

diameter, operating at metre wavelengths  --  the largest 
in the world at these frequencies



• The Very Large Array 
(VLA)

• 8.43 GHz ( = 3.56cm)
• 3C268.4

• Data courtesy Colin 
Lonsdale, MIT Haystack 
Observatory Image courtesy NRAO/AUI 

A real life example



Observations
span ~7 hours

35.6 km

Array configuration and uv coverage
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The interferometer response function
Point Spread Function



1 Jy = 10-26 W m-2 Hz-1 

Sqrt(u2 + v2)   ()
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)

400 mJy

A typical FM radio station ~0.1 
W Hz-1 placed at the distance of 
the Sun (1.5x108 km)            
~35 Jy at Earth
VLA sensitivity at 8 GHz 
~45x10-6 Jy  (10 min, 86 MHz)

In 10 min VLA can detect a 
source as strong as a typical FM 
station ~88 AU away!

225,902 
visibilities!

106 

The measured cross-correlations



Log scale

The dirty map
Convolution of the PSF with 
the Brightness distribution 

The FT of gridded visibilities



• The measurements from any instrument are really the 
convolution of the transfer function of the instrument and 
the input signal.

• In order to figure out the true input signal, it is necessary to 
deconvolve the transfer function from the measurements

•  Radio Astronomy solutions
• CLEAN algorithm(s)
• Maximum Entropy Method(s) 

The problem of deconvolution



Log scale

Actually, CLEANed and Self-calibrated map

● ~50,000 Clean iterations
●  ~4000 Clean components
● Dynamic range ~5000
● Noise         ~30 Jy/beam

The CLEANed map



Human presence = radio pollution

Radio Analog of Dark Sky Problem



Humans < 1/100 km2

Population Density



 The SKA is the most ambitious Radio Astronomy project 
ever attempted 

 1 square km  (1,000,000 m2) collecting area  (~30 x GMRT!)  
⇒  ~3000 small sized antennas,  with larger field of view

 High resolution  ⇒ antennas spread out over distances up 
to 3000 km, but connected in real-time (by optical fiber)

 Wide frequency range: 70 MHz - 10 GHz 
 Location : Australia AND South Africa (radio quiet regions, 

far away from human habitat)
 Cutting edge science in all frontline areas

 SKA Phase-1 construction phase just started - completion 
expected by 2027. Radio telescope sensitivities over the years    

SKA will be  50x  better than today’s best !

z

The Square Kilometre Array



• Characteristics of new instruments
• 1-2 orders of magnitude improvements in sensitivity and imaging fidelity
• Gather more detailed and higher SN information about the sky

• Ability to solve more challenging astrophysics problems
• Assumptions/approximations made in most of the present analysis no longer valid

• Require more sophisticated analysis algorithms 
• Higher sensitivity => need to reduce ‘systematics’ in the analysis

• Requires deeper understanding of the instrument, the sky and the analysis procedures

• Not only will they enable new and exciting science, the process of getting to the 
new science requires really exciting research in its own right

The challenges and opportunities
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Thanks

Questions
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