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Astronomy: A personal perspective

* The only source of information - the tiny amounts of radiation incident on the
telescopes

— You can only ‘observe’ not ‘experiment’
— Observations + laws of physics + logic
* Telescopes tend to be marvelous feats of engineering
— The most detailed characterisation of light possible
— Measure very faint signals with very high accuracy
* Detective work — the art and science of logical deduction

- Over the years we have learnt an amazing amount about our grand universe from
analysing a minuscule amount of light which happens reach our vantage point.

* Important lessons in humility and unity — The Pale Blue Dot




Infrared Visible Ultra-violet

Image credits: Radio: WSRT/R. Braun; Infrared:NASA/Spitzer/K. Gordon;
Visible: Robert Gendler; Ultraviolet: NASA/GALEX; X-ray: ESA/XMM/W. Pietsch



http://www.astron.nl/
http://gallery.spitzer.caltech.edu/
http://www.robgendlerastropics.com/
http://www.galex.caltech.edu/
http://xmm.esac.esa.int/
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Karl Jansky: The Birth of Radio Astronomy
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* Size of the main lobe in \
radians ~A/D
* A Is the wavelength AN L0 x
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Radlo Telescope: Basics

* Like your satellite dish... only more challenging :

Celestial radio signals are VERY weak (& there is
corruption due to noise !) ; unit of flux used is :

1]y =10 2°W m=2 Hz!
* Input radio power into a typical telescopeis ~

-100 dBm ! (would take 1000 years of continuous
operation to collect 1 millijoule of energy !!)

* For high sensitivity (to see faint sources out to
the distant reaches of the Universe) :

- large dishes (several 10s of metres in diameter)

- high quality, low noise electronics in the receivers
- large bandwidths of observation

- long integration times

antenna

arabolic
dish

computer
recorder

0J

amplifier

A radio telescope reflects radio waves to a
focus atthe antenna. Because radio wavelengths
are very large, the radio dish must be very large.



Whet o variefs

f~ 100 GHz, A~ 0.003 m f~1GHz, A~0.3m == UL E1, 1= &

BieirnEEr = 1 [ Diameter = 45 m A collection of dipoles (4x4 = 16)
Surface: 6 = 25 um Surface: ¢ =5 mm No CUI’VIEd surface

Pointing: AB = 0.6 arcsec Pointing: A6 = 1 arcmin MO VIR [PEIFS,

Carbon fiber & invar reflector Wire mesh reflector SIEEHTONLS [Reriing

Solid and heavy support members ~ Light weight support structure
Pointing meteorology structure No special pointing structure
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The gquest for resolution: Interferometry

* Resolution ~ A/D
* )\ wavelength of observation
* - size of aperture (diameter of lens/mirror)

* larc sec resolution requires D ~2x10° A
- A=8000A; D=16cm

— For radio waves hcanges from 0.5 mm to 10 km = D ~100 m to ~2x10%km

* Impossible to build apertures of required dimensions and surface
accuracy

* Interferometry - resolutions corresponding to the separation
between the elements (telescopes)




The Concept Benind an Interferometer

* The important property of a parabolic dish is that it adds
parallel light rays coherently

* Parallel rays (from infinity) have equal path lengths to the
focus, so they all arrive in phase

* This is still true if we remove segments of the parabola —
remaining rays still reach focus in phase

* Now imagine moving the remaining segments of the dish off
the surface of the paraboloid

* So long as we know very precisely where the segments are
located, we can delay their signals appropriately and still
add them together coherently

* This, in essence, is what an interferometer does

N
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Images: wikipedia




lmaging with a lens (mirror)

It ensures that the optical path lengths from all points on a plane wavefront (perpendicular to the
optical axis) to the focal point are the same.




A more sopnisticated perspective

Mathematically, a lens performs a Fourier Transform of the incident wavefront

E(x,y) < E'(6,9)
A characteristic of optical imaging

systems

* Transfer function / Point source
response / Point spread function
(PSF) - Airy pattern

e Resolution = 1.22 A/D




Imaging with an unfilled aperture
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Young's double slit experiment
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Phase
comes from
the (sum of)
i geometric
------ path length,

optical fiber,
cables and
electronic

detays

Slits —
Telescopes

Reciprocity
theorem

Screen/Detector —
Correlator




Baselines and uv plane

= N(N-1)/2
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SKy response of a baseline

T

Cos 2m(ul + vm);
u,v - components of the baseline; I,m - coordinates in
Image plane

AN
N




An N element interferometer

* ‘Baselines’ from N elements — N(N-1)/2

- Each of these will lead to a ‘fringe’ with
different orientation and spacing

* The final response of the interferometer
will be the superposition of fringes from
all the baselines
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Dirty Beam Shape and N Antennas
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Dirty Beam Shape and N Antennas

3 Antennas
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Dirty Beam Shape and N Antennas

5 Antennas
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Dirty Beam Shape and N Antennas

8 Antennas

-
T T T T T
(=
Lo -
-+
- -
L I s
- . . - -‘g
i - -
= - - =
- )
L -
. N * - U
By - e L . e ® &
3 ; :
=5 - 1 &
- - LI . - - e
.
L - - = E
-
= 5 E
Y - ® - 2
| - - u E
- .
g : '
- * |
|
1 | 1 " | i
- 4000 — 200 ] 200 O
u (k)

RA offset (arcsec; J2000})

N

N2 Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA
_



Synthesis imaging

VLA - 27 antennas = 351 baselines
GMRT - 30 antennas = 435 baselines
MWA — 128 elements = 8,128 baselines

N
¥



Dirty Beam Shape and N Antennas

8 Antennas x 30 samples
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Dirty Beam Shape and N Antennas

8 Antennas x 480 samples
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Visibility - V(u,Vv)

HThe fundamental Radio Astronomy measurable 2
Vii(u,v,t, At,v, Av) =< Vi(...,t, . )Vi( b+ 7,...) >= 7008(&)7‘)
Hvan Cittert Zernike Theorem ‘

V(u,v) is 2D Fourier Transfo
Brightness distribution B(6,q
(T(x,y) In the following slides)

 |[ncoherent source,
e Small field of view
e Far-field

Mtenna 2

T
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B,(T) 2 h21/3 — 1T W m? Hzt sr1
Planck’s law ¢ Scbo i
BA(T) = 2 hc? 1 s

\o ehc/ksAT _ q

At radio wavelengths ﬂ << 1
kT

In this regime, the Plank’s law reduces to the Rayleigh- B (T)

Jeans Law A2




Visibilities

* each V(u,v) contains information on T(X,y) everywhere, not
just at a given (X,y) coordinate or within a given subregion

* V(u,v) is a complex quantity

— visibility expressed as (real, imaginary) or (amplitude, phase)

T(x,y) V(u,v)

1

amplitude phase

6
N Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA




Example 2D Fourier Transform Pairs

T(xy) amp{V(u,v)}

O function constant
elliptical elliptical
Gaussian Gaussian

narrow features transform into wide features (and vice-versa)
7

Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA
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Example 2D Fourier Transform Pairs

T(xy) amp{V(uv)}

disk

Bessel

sharp edges result in many high spatial frequencies .

Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA
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Amplitude and Phase

« amplitude tells “how much” of a certain spatial frequency

* phase tells “where” this component is located

T(x,y) V(u,v)

amplitude phase

Courtesy David J. Vilner, Harvard-Smithsonian Center for Astrophysics, USA
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The mathematical basis

* Brightness distribution in the sky is Fourier transform of the
Visibilities
B(6,9) < V(u,v)
V(u,v) — The quantity measured by a baseline (amplitude, phase / real,
Imaginary)
*|n the uv-plane, we measure visibilities only at a few places I.e. we
have a sampling function

S(u,v) = Z, (Uy, V)

*Point source response of an interferometer (PSF) is Fourier
transform of S(u,v). It is also known as Point-Spread-Function or
Dirty Beam

P(0,¢p) <> S(u,v)

N
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Putting It all together...

 The outcome of any measurement is the convolution of
— The true measurable - the sky brightness - B(0, ¢)
— The response function of the instrument (PSF)

 Referred to as the Dirty image
— FT of the measured visibilities
— Convolution of the PSF and the true sky brightness distribution

 To get true sky brightness distribution, one needs to
— ‘deconvolve’ the PSF from the dirty image
— ‘calibrate’ out the antenna response

7
N



Radlo Telescopes: Interferometers

VLA, 27 dishes, 25 m dia, ATCA, 6 dishes, 22 m dia,
35 km bl m dia, 16 km bl 6 km bl

The Global VLBI - Array
Wil LN ﬂ@ﬂ[ﬂﬂn

A &

BT s

—

WSRT, 14 dishes, 25 m VLBI, many antenna around the LOFAR, 48 stations, ~50 m dia, 100s
dia, 3 km world, including a satellite of km bl




Glant Metrewave Radio Telescope

* GMRT Is a world class facility for studying astrophysical
phenomena at low radio frequencies (150 to 1450 MHz)

* Designed and built primarily by NCRA, during the 1990s.

* Array telescope consisting of 30 antennas of 45 metres
diameter, operating at metre wavelengths -- the largest
In the world at these frequencies
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A real life example

* The Very Large Array
(VLA)

*8.43 GHz (A = 3.56cm)
- 3C268.4

- Data courtesy Colin
Lonsdale, MIT Haystack
Observatory

Image courtesy NRAO/AUI




Array configuration and uv coverage
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The Interrerometer response function

Point Spread Function

=

Declination (B1950)

4
Right Ascension (B1950)
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A typical FM radio station ~0.1
W Hz!placed at the distance of
the Sun (1.5x108 km) =
~35 Jy at Earth

VLA sensitivity at 8 GHz
~45x10°% Jy (10 min, 86 MHz)

In 10 min VLA can detect a
source as strong as a typical FM
station ~88 AU away!

1]y =1026W m2Hz?!

(mJy)

Amplitude

FLOT FILE YERSIOH @

AMPLITULDE WS
AHTS #* - =*

STOKES

CREATED 1@-MAY-z28684 15:25:33

I

Uy DIST FOR 3IC2e8d_A_x

- 2 CHAaN

1

2. SPLIT.

225,902
visibilities!
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The dirty map

Convolution of the PSF with
the Brightness distribution
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The problem of deconvolution

- The measurements from any instrument are really the

convolution of the transfer function of the instrument and
the input signal.

*In order to figure out the true input signal, it Is necessary to
deconvolve the transfer function from the measurements

* Radio Astronomy solutions
* CLEAN algorithm(s)
- Maximum Entropy Method(s)




The CLEANed map
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Actually, CLEANed and Self-calibrated map

~50,000 Clean iterations
~4000 Clean components
Dynamic range ~5000
Noise ~30 wy/beam
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Radio Analog of Dark Sky Problem
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Population Densit

Estimated 2015
Population Density

persons per km?

[iiT}o-s

Humans

< 1/100 km?




The SKA is the most ambitious Radio Astronomy project
ever attempted

1 square km (1,000,000 m?) collecting area (~30 x GMRT!)
= ~3000 small sized antennas, with larger field of view

High resolution = antennas spread out over distances up
to 3000 km, but connected in real-time (by optical fiber)

Wide frequency range: 70 MHz - 10 GHz

Location : Australia AND South Africa (radio quiet regions,
far away from human habitat)

Cutting edge science in all frontline areas

SKA Phase-1 construction phase just started - completion
expected by 2027.

The Sguare Ki\omerry
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Radio telescope sensitivities over the years
SKA will be 50x better than today’s best !




The challenges and opportunities

* Characteristics of new instruments
« 1-2 orders of magnitude improvements in sensitivity and imaging fidelity
* Gather more detailed and higher SN information about the sky
Ability to solve more challenging astrophysics problems
* Assumptions/approximations made in most of the present analysis no longer valid
Require more sophisticated analysis algorithms

* Higher sensitivity => need to reduce ‘systematics’ in the analysis
Requires deeper understanding of the instrument, the sky and the analysis procedures

* Not only will they enable new and exciting science, the process of getting to the
new science requires really exciting research in its own right
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Thanks

Questions
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