#### The SKA Observatory

Tirthankar Roy Choudhury National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune



Radio Astronomy School NCRA-TIFR, Pune 29 August 2019 **Topics** 



- ► The SKAO
- ► Indian participation
- ► One science case: the first stars

## The SKAO





The next-generation radio astronomy-driven Big Data facility

that will revolutionise our understanding of the Universe and the laws of fundamental physics.



#### Global HQ at Jodrell Bank, UK



197 mid-frequency dishes in South Africa



1,31,072 low-frequency antennas in Western Australia

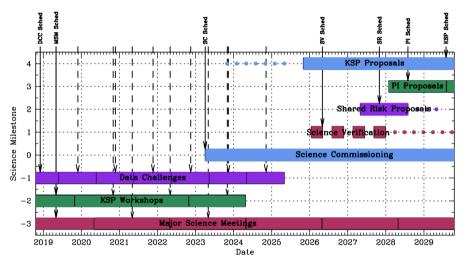
## **SKA-Mid**





- ► Karoo site in South Africa
- ► Frequency range: 350 MHz 15.4 GHz
- ▶ 133 15 m SKA dishes and 64 13.5 m MeerKAT dishes
- ► Baseline design: core of around 50% of the dishes, randomly distributed within 2 km, three logarithmic spiral arms with a maximum baseline extending out to 150 km

#### **SKA-Low**






- Murchison Radio-astronomy Observatory, Western Australia
- ► Frequency coverage: 50 350 MHz
- ► Log-periodic dipole antennas distributed across 512 aperture array stations of 256 antennas each
- ▶ Baseline design: around 50% of the stations within a 1 km diameter core, remaining stations organised in clusters of 6 stations on three modified spiral arms. The maximum baseline ~ 70 km.

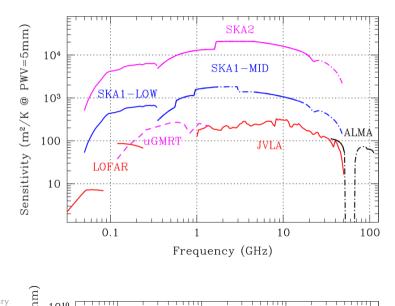
# **SKA timeline**





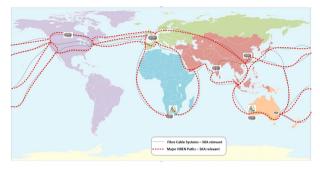
#### Assumes construction start date July 2021, in reality December 2022.

# **Countries participating in the SKA**





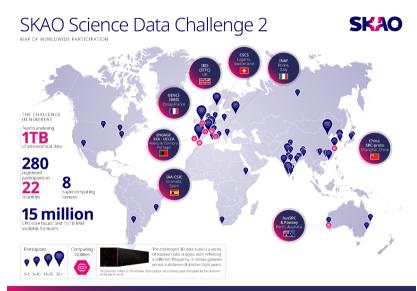

Members: Australia, China, Italy, The Netherlands, Portugal, South Africa, Switzerland, United Kingdom.
Prospective Members: Canada, France, Germany, India, Japan, South Korea, Spain, Sweden.


#### SKA1 compared to other telescopes





# Big data with the SKAO






- ▶ 8 Tbps from SKA-Low to Perth, 20 Tbps from SKA-Mid to Cape Town.
- ► Two high-performance supercomputers called Science Data Processors (SDPs), each ~ 135 PFlops.
- ► SKAO will archive 300 petabytes of data per year.
- From the SDP supercomputers, data will be distributed via intercontinental telecommunications networks to SKA Regional Centres in the SKAO Member States where science products will be stored for access by the end users.

## SKAO science data challenge





# **SKA: Indian involvement**





- India contributed heavily to the design phase of the project, leading role in the *Telescope Manager* system (controlling nerve centre and brains behind the functioning of the entire SKA observatory.).
- The proposal to join the construction and operation phase is pending with the Government of India.
- ► The activities within India are coordinated by the *SKA-India Consortium*, ~ 20 organisation members.



 Science activities coordinated by SKA-India Science Working Groups.

# **SKA-India science**

Journal of Astrophysics and Astronomy All Volumes & Issues

#### Indian Participation in the SKA

ISSN: 0973-7758 (Online)

In this topical collection (15 articles)



Scientific Review

Probing the epoch of reionization using synergies of line intensity mapping Chandra Shekhar Murmu, Raghunath Ghara...

» Download PDF (1588KB) » View Article

Article: 104



#### Published: 20 October 2022 Editorial

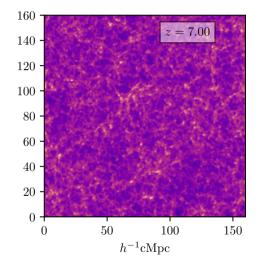
Tirthankar Roy Choudhury, Abhirup Datta 🖂, Preeti Kharb & Nirupam Roy

Journal of Astrophysics and Astronomy, 43, Article number: 78 (2022) | Cite this article 440 Accesses | 5 Altmetric | <u>Metrics</u>

The Square Kilometre Array (SKA), when completed, will be the largest radio telescope in the world. The project is funded by an international collaboration consisting of more than a dozen countries across the world. The design of the facility has recently been completed and it has now entered the phase of construction. By the end of this decade, one expects the telescope to be largely complete and producing excellent scientific results.



- Indian scientists involved in almost all the interesting science areas in the SKA.
- These cover areas starting from the Sun to our Galaxy to the largest scales in the Universe.
- The Indian science interests have been compiled in an upcoming issue of the *Journal of Astronomy & Astrophysics*.
- About 30 articles, all accepted, the volume under process at the moment.


## Science with the SKA



|                                                                                                                    | SKA1                                                                | SKA2                                                         |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                                    | Proto-planetary disks;                                              | Proto-planetary disks;                                       |
| The Cradle of Life & Astrobiology<br>Hoare, M. et al. 2015<br>PoS(AASKA14)115                                      | imaging snow/ice line (@ < 100pc),                                  | sub-AU imaging (@ <150 pc),                                  |
|                                                                                                                    | Searches for amino acids.                                           | Studies of amino acids.                                      |
|                                                                                                                    | Targeted SETI:                                                      | Ultra-sensitive SETI: airport rada                           |
|                                                                                                                    | airport radar 104 nearby stars.                                     | 10 <sup>5</sup> nearby star, TV ~10 stars.                   |
| Strong-field Tests of Gravity with<br>Pulsars and Black Holes<br>Kramer, M. & Stappers, B. 2015<br>PoS(AASKA14)036 |                                                                     | Gravitational wave astronomy of                              |
|                                                                                                                    | 1st detection of nHz-stochastic                                     | discrete sources: constraining gala                          |
|                                                                                                                    | gravitational wave background.                                      | evolution, cosmological GWs an                               |
|                                                                                                                    |                                                                     | cosmic strings.                                              |
|                                                                                                                    | Discover and use NS-NS and PSR-                                     | Find all ~40,000 visible pulsars i                           |
|                                                                                                                    | BH binaries to provide the best tests                               | the Galaxy, use the most relativist                          |
|                                                                                                                    | of gravity theories and General                                     | systems to test cosmic censorshi                             |
|                                                                                                                    | Relativity.                                                         | and the no-hair theorem.                                     |
| The Origin and Evolution of<br>Cosmic Magnetism<br>Johnston-Hollitt, M. et al. 2015<br>PoS(AASKA14)092             | The role of magnetism from sub-                                     | The origin and amplification of                              |
|                                                                                                                    | galactic to Cosmic Web scales,                                      | cosmic magnetic fields,                                      |
|                                                                                                                    | the RM-grid @ 300/deg2.                                             | the RM-grid @ 5000/deg2.                                     |
|                                                                                                                    | Faraday tomography of extended                                      | Faraday tomography of extended                               |
|                                                                                                                    | sources, 100pc resolution at 14Mpc,                                 | sources, 100pc resolution at 50Mp                            |
|                                                                                                                    | 1 kpc @ z ≈ 0.04.                                                   | $1 \text{ kpc} (a) z \approx 0.13.$                          |
| Galaxy Evolution probed by<br>Neutral Hydrogen<br>Staveley-Smith, L. & Oosterloo, T.<br>2015, PoS(AASKA14)167      | Gas properties of 107 galaxies,                                     | Gas properties of 109 galaxies,                              |
|                                                                                                                    | $\langle z \rangle \approx 0.3$ , evolution to $z \approx 1$ ,      | $\langle z \rangle \approx 1$ , evolution to $z \approx 5$ , |
|                                                                                                                    | BAO complement to Euclid.                                           | world-class precision cosmology                              |
|                                                                                                                    | Detailed interstellar medium of                                     | Detailed interstellar medium of                              |
|                                                                                                                    | nearby galaxies (3 Mpc) at 50pc                                     | nearby galaxies (10 Mpc) at 50p                              |
|                                                                                                                    | resolution, diffuse IGM down to                                     | resolution, diffuse IGM down to                              |
|                                                                                                                    | $N_{\rm H} < 10^{17}$ at 1 kpc.                                     | $N_{\rm H} < 10^{17}$ at 1 kpc.                              |
| The Transient Radio Sky<br>Fender, R. et al. 2015<br>PoS(AASKA14)051                                               | Use fast radio bursts to uncover the                                | Fast radio bursts as unique probes                           |
|                                                                                                                    | missing "normal" matter in the                                      | fundamental cosmological                                     |
|                                                                                                                    | universe.                                                           | parameters and intergalactic                                 |
|                                                                                                                    | 0.1.0.0.1.0                                                         | magnetic fields.                                             |
|                                                                                                                    | Study feedback from the most<br>energetic cosmic explosions and the | Exploring the unknown: new exot                              |
|                                                                                                                    | disruption of stars by super-massive                                | astrophysical phenomena in                                   |
|                                                                                                                    | black holes.                                                        | discovery phase space.                                       |
|                                                                                                                    | Star formation rates                                                | Star formation rates                                         |
| Galaxy Evolution probed in the                                                                                     | $(10 M_{\odot}/yr \text{ to } z \sim 4).$                           | (10 M <sub>a</sub> /yr to z ~ 10).                           |
| Radio Continuum                                                                                                    | (10 m <sub>0</sub> .)) to z = 4).                                   | (10 M <sub>8</sub> , y1 10 z ~ 10).                          |
| Prandoni, I. & Seymour, N. 2015                                                                                    | Resolved star formation astrophysics                                | Resolved star formation astrophys                            |
| PoS(AASKA14)067                                                                                                    | (sub-kpc active regions at z ~ 1).                                  | (sub-kpc active regions at z ~ 6)                            |
| Cosmology & Dark Energy<br>Maartens, R. et al. 2015<br>PoS(AASKA14)016                                             | Constraints on DE, modified gravity.                                | Constraints on DE, modified gravi                            |
|                                                                                                                    | the distribution & evolution of                                     | the distribution & evolution of                              |
|                                                                                                                    | matter on super-horizon scales:                                     | matter on super-horizon scales:                              |
|                                                                                                                    | competitive to Euclid.                                              | redefines state-of-art.                                      |
|                                                                                                                    | Primordial non-Gaussianity and the                                  | Primordial non-Gaussianity and th                            |
|                                                                                                                    | matter dipole: 2× Euclid.                                           | matter dipole: 10× Euclid.                                   |
| Cosmic Dawn and the Epoch of<br>Reionization                                                                       |                                                                     | Direct imaging of Cosmic Dawr                                |
|                                                                                                                    | Direct imaging of EoR structures                                    | structures                                                   |
|                                                                                                                    | (z = 6 - 12).                                                       | (z = 12 - 30).                                               |
|                                                                                                                    | Power spectra of Cosmic Dawn                                        | (1. 1 50).                                                   |

## Growth of large-scale structures



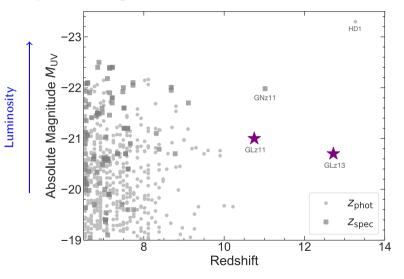


#### N-body simulations using GADGET-2 (Springel et al 2005), run on a NCRA Fujitsu server

# Search for the first stars



Probes planned for detecting the first stars



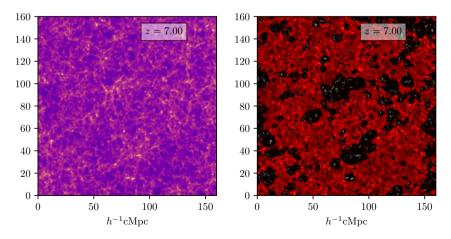

JWST

TMT

#### Brighter stars easier to detect, faithful distribution of the underlying population?

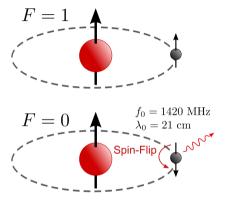
## JWST already breaking records




Naidu et al (2022)

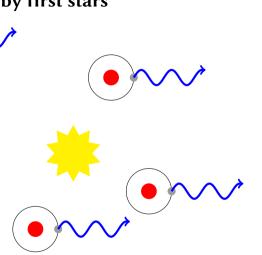


# Alternate method: hydrogen




- ► The galaxies are surrounded by hydrogen, the most abundant element in the Universe.
- ► Is it possible to infer about the stars using the hydrogen?
- ► Yes, several methods. One promising way is through the 21 cm radiation.




### 21 cm radiation



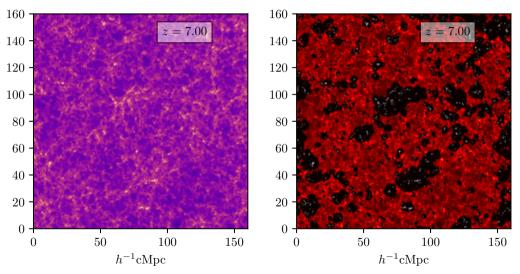


- Radiation originates due to "spin flip".
- Only possible when hydrogen is neutral, no radiation when ionization happens (i.e., the electron dissociates).

# Reionization of hydrogen by first stars

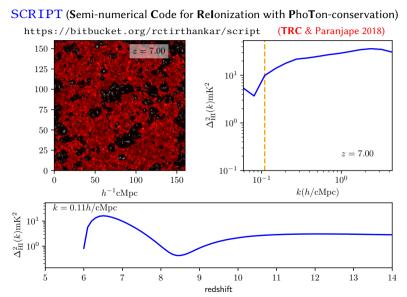


Nestragenyideargebeastans izinigeideiradiration



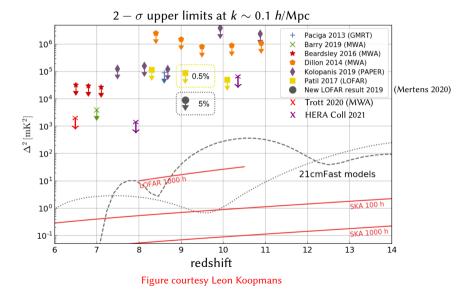

# **Galaxies and reionization**




Density + halo (galaxies)

#### Neutral hydrogen (HI)




#### 21 cm maps and power spectra





#### Present constraints on the 21 cm power spectrum





## Summary





- Most ambitious radio astronomy project ever attempted.
- ► To be built in Australia and South Africa.
- ► First science expected around 2029. One of the main science cases is the detection of HI signal from the epoch of reionization.
- India is a member of the SKA international collaboration (lead by NCRA-TIFR). uGMRT, an SKA pathfinder, often provides useful test-bed for SKA.



This presentation was prepared using the BEAMER class of LATEX