Supernovae

Nayana A.J. Indian Institute of Astrophysics

 $\bullet \bullet \bullet$

Radio Astronomy School 2023, NCRA-TIFR, Pune

Plan of talk

Introduction - Supernovae.
Progenitor problem.
Radio emission from Supernovae.
Modeling and physical parameters.
Potential of low-frequency observations.
Summary and Future directions.

Supernovae

Marks the death of a star. Luminosity \sim a billion suns. Interesting Astrophysical events Chemical evolution Cosmological distance indicator Particle acceleration Shock physics Star formation Galactic evolution

Image credit: "Supernova Explosions" - book by David Branch and J Craing Wheeler

Different types of supernovae

Progenitor problem

Supernovae exhibit diverse observational signatures.
What are the progenitors of different types of SNe?
What are the end stages of massive stars that leads to different types of explosion?

Direct detection efforts

Direct detection of progenitor exists for ~ 30 SNe

(Van Dyk et al. 2017)

Image credit:https://www.spacetelescope.org/images/opo1847b/

Radio emission from supernovae

Shock-driven synchrotron emission with associated absorption processes.

(Van Dyk et al. 1994)

Dominant absorption processes

Free-free absorption (FFA) by the ionized medium.

Synchrotron self-absorption (SSA) from the same relativistic electrons.

(Chandra et al. 2019)

(Anderson et al. 2017)

Pre-explosion mass-loss rate of progenitor system Density structure of the CSM

$$\tau_{\rm ffa} = \int_{R_s}^{\infty} \kappa_{\rm ffa} n_e n_i dr$$
$$n_e = \frac{\dot{M}}{4\pi r^2 w \mu_e m_H}$$

Physical parameters of the system

Shock radius, velocity and magnetic fields

$$S_
u \propto rac{\pi R^2}{D^2} B^{-1/2}
u^{5/2}$$

$$S_{\nu} \propto rac{4\pi f R^3}{3D^2} N_0 B^{(p+1)/2} \nu^{-(p-1)/2}$$

(Chandra et al. 2019)

Physical parameters of the system

Shock radius, velocity and magnetic fields

$$R_{\rm p} = 8.8 \times 10^{15} f_{\rm eB}^{-1/19} \left(\frac{f}{0.5}\right)^{-1/19} \left(\frac{S_{\rm p}}{\rm Jy}\right)^{9/19} \left(\frac{D}{\rm Mpc}\right)^{18/19} \times \left(\frac{\nu_{\rm p}}{\rm 5\,GHz}\right)^{-1} \rm cm$$

$$B_{\rm p} = 0.58 f_{\rm eB}^{-4/19} \left(\frac{f}{0.5}\right)^{-4/19} \left(\frac{S_{\rm p}}{\rm Jy}\right)^{-2/19} \left(\frac{D}{\rm Mpc}\right)^{-4/19} \times \left(\frac{\nu_{\rm p}}{\rm 5\,GHz}\right) \rm G.$$

Radio observations of SNe are interesting

Give important information about the progenitor system.
Clues about the density structure of the CSM.
Estimates of shock radius, velocity, and magnetic field.
Mass-loss rate of the progenitor system.

Through the evolution of a supernova in radio bands - role of uGMRT

SN2016gkg – monitoring for ~ 1000 days

SN2016gkg – type IIb supernova.

• Exploded on 2016 Sep 16.

• Galaxy NGC 613 at 26 Mpc.

Progenitor identified from archival HST

image.

Radio observations and modeling

Radio flux density F(freq, time)

(Nayana et al. 2022)

Modeling radio light curves and spectra

$$S(\text{mJy}) = K_1 \left(\frac{\nu}{5 \text{ GHz}}\right)^{\alpha} \left(\frac{t - t_0}{1 \text{ day}}\right)^{\beta} e^{-\tau_{\text{external}}} \left(\frac{1 - e^{-\tau_{\text{CSM}_{\text{clumps}}}}}{\tau_{\text{CSM}_{\text{clumps}}}}\right) \left(\frac{1 - e^{-\tau_{\text{internal}}}}{\tau_{\text{internal}}}\right)$$

$$FFA$$

(Weiler 2022)

Modeling radio light curves and spectra

Reduced chi_square = 3.2 (SSA) 4.4 (FFA)

Shock parameters and their evolution

R_{shock} ~ (5-72) X 10¹⁵ cm at t ~ 24 to 492 days.
 B ~ (1 – 0.08) Gauss.
 Mass-loss rate ~ (2 – 5) X 10⁻⁶ M_{sun}/year.

Unique role of uGMRT observations

Signatures of non-uniform CSM

Moderate flux density enhancements indicating non-uniform CSM density

Clues on progenitor system

- Compact and extended progenitors of SNIIb.
 R(93J) ~ 600 R_{sun} R(08ax) ~ (30-50) R_{sun}
 SSA model fits the data better.
 Mdot ~ 10⁻⁶ M_{sun}/yr → typical of WR stars.
 V_{shock} ~ 0.1 c.
- Position in L_p-t_p diagram.

Progenitor of SN2016gkg is relatively compact \rightarrow in line with the results from HST archival image analysis R ~ 70 R_{sun}.

(Aldering 1994, Folatelli 2015, Kilpatrick 2021)

Summary

Radio observations of supernovae is a powerful tool to understand the progenitor scenario, energetics, and environments. Various physical parameters – mass-loss rate, shock radius, velocity, shock deceleration parameter, and magnetic fields. • Low-frequency (sub-GHz) observations are particularly interesting to probe the extended environment of these events and to disentangle the dominant absorption processes.