

Sensitivity

Yogesh Maan

Radio Astronomy School (RAS-2023)

Main references, sources and credits:

- Low-frequency Radio Astronomy (primarily Chapters 3 and 5),
- Handbook of Pulsar Astronomy,
- Poonam Chandra and J. van Leeuwen's talks available online; and internet.

Which one has higher sensitivity?

IC: Poonam Chandra's Lecture.

Which one has higher sensitivity?

Source: EPN pulsar database.

Which one has higher sensitivity?

IC: George et al. 2021. (In reality, images are at different frequencies)

- A measure of the "minimum detectable flux density",
 - in an interferometric image,
 - in a time-series, or
 - by a telescope.
- A measure of the "noise",
- Not a measure of the signal.

IC: GMRT

Why Sensitivity is Crucial?

- A building block of any radio telescope,
- Crucial to design observations, preparing technically sound observing proposals (e.g., 1 $\,\mu$ Jy in 1 hour with uGMRT band-4??),
- To accurately characterise observational data:
 - Estimates of the flux density,
 - Sensible upper limits, etc.
 - Error analysis of an image, a time-series, spectrum.

Radio Astronomy: Signals and Noise

- Flux density S(ν) units: Jansky (Jy); 1 Jy = 10⁻²⁶ W/m²/Hz
- More relevant for extended sources, Sky brightness (B): "W/m²/Hz/sr" OR Brightness temperature: "K"; S(ν)=ΩB(ν)
- Rayleigh-Jeans approximation to the Plank spectrum of a (thermal radiation from a) black-body:

$$T_B = \frac{\lambda^2}{2k} B(\nu)$$

• Brightness temperature is directly related to the physical temperature only for thermal emission and large optical depth.

Radio Astronomy: Signals and Noise

- In the radio regime, power per unit bandwidth: $P = k_B T$
- Equivalently, antenna temperature, $T_A = P/k_B$
- For effective collecting area A_e, power received per unit bandwidth from a source of flux density S:

 $P_{src} = S \times A_e / 2$; for each polarization

• $T_{src} = S \times A_e / 2k_B \text{ OR } \underline{T_{src}} = GS$; where $G = A_e/2k_B$ is the gain.

Radio Astronomy: Signals and Noise

• Considering the total system, "system temperature"

 $T_{sys} = Total-power-received/k_B$

 $T_{sys} = T_{sky} + T_{spill} + T_{loss} + T_{rec}$

- T_{sky}: the background sky brightness temperature,
- T_{spill}: the spillover noise temperature,
- T_{loss}: contribution from any lossy element in the path, and
- T_{rec}: the receiver temperature

System Equivalent Flux Density (SEFD)

• Considering the total system, "system temperature"

 $T_{sys} = GS_{sys}$ (recall $T_{src} = GS$) SEFD = $S_{sys} = T_{sys}/G$

- SEFD takes into account the system temperature, efficiency and the collecting area --- a useful measure of the system performance.
- SEFD of a radio telescope can be measured by switching the telescope between blank sky and a bright source of known flux density.

System Equivalent Flux Density (SEFD)

 SEFD is often measured in units of Jy --- flux density of a radio source that doubles the system temperature.

 $SEFD = S_{sys} = T_{sys}/G = 2k_BT_{sys}/A_e$

 SEFD is a good way to compare the sensitivity of different telescopes.

System Equivalent Flux Density (SEFD)

Sensitivity: The Radiometer Equation

• Considering the total system, "system temperature"

 $T_{sys} = Total-power-received/k_B$

 $T_{sys} = T_{sky} + T_{spill} + T_{loss} + T_{rec}$

- T_{sky}: the background sky brightness temperature,
- T_{spill}: the spillover noise temperature,
- T_{loss}: contribution from any lossy element in the path, and
- T_{rec}: the receiver temperature

Sensitivity: The Radiometer Equaiton

• The minimum temperature that a telescope can measure is limited by the noise (root mean square) fluctutions in the receiver system.

$$\Delta T_{\rm sys} = \frac{T_{\rm sys}}{\sqrt{n_{\rm p} t \,\Delta f}}$$

- For a Δf bandwidth stochastic process, coherence time ~ 1/ Δf
- => No. of independent samples in t seconds = t x Δf

Single Dish Sensitivity

• $S/N = T_{src} / \Delta T_{sys}$ (recall $T_{src} = GS$)

$$S_{\min} = \beta \frac{(S/N_{\min})T_{sys}}{G\sqrt{n_{p} t_{int} \Delta f}}$$

- β is the correction factor to account for imperfections (due to digitization and other factors).
- The minimum detectable "mean" flux density (corresponding to a S/N threshold S/N_{min}).

Single Dish Sensitivity for Pulsars

• S/N = T_{src} / ΔT_{sys} (recall T_{src} = GS)

$$S_{\min} = \beta \frac{(S/N_{\min})T_{sys}}{G\sqrt{n_{p} t_{int} \Delta f}} \sqrt{\frac{W}{P-W}}$$

• The minimum detectable "mean" flux density (corresponding to a S/N threshold S/N_{min}) for a signal with period P and pulse-width W.

Phased-array Sensitivity

- For N "identical" elements, the effective collecting area increases by a factor "N".
- Hence the gain increases by the same factor.

$$S_{\min} = \beta \frac{(\mathrm{S/N_{\min}})T_{\mathrm{sys}}}{G\sqrt{n_{\mathrm{p}} t_{\mathrm{int}} \Delta f}} \frac{1}{\mathrm{N}}$$

IC: Divya Oberoi's lecture and wikipedia.

Sensitivity: 2-element interferometer

- Formal derivations in Wrobel and Walker 1999, and Ch. 5 of "Low frequency Radio Astronomy" book, a crude and heuristic way to think is the following:
- Effective collecting area is same as that of the individual elements.
- Correlation outputs from two-different channels of the complex-correlator
 => 2x independent samples

$$S_{\min} = \beta \frac{(S/N_{\min})T_{sys}}{G\sqrt{n_{p} t_{int} \Delta f}} \frac{1}{\sqrt{2}}$$

Sensitivity: N-element interferometer

- N-element interferometer (with 2-element correlations) is equivalent to ${}^{N}C_{2}$ independent 2-element interferometers, as it can be shown that:
 - Outputs from two 2-element interferometers with one common antenna are uncorrelated, and
 - Outputs from two 2-element interferometers with no common antenna are uncorrelated.

$$S_{\min} = \beta \frac{(S/N_{\min})T_{sys}}{G\sqrt{n_{p} t_{int} \Delta f}} \frac{1}{\sqrt{N(N-1)}}$$

 For large values of N, N(N-1) -> N², and hence, the point-source sensitivity of an interferometer reaches that of a single antenna with area equal to the cumulative area of all the elements.

Image Sensitivity

Other factors that affect image-sensitivity:

- Sensitivity varies as a function of the offset from the pointing center.
- Radio frequency interference, T_{sys} variations, improper alignment of the dish and feed axis, elevation dependent pointing offsets, etc. degrades the sensitivity.
- Statistics in the image plane need to take into account like smoothing, deconvolution, etc.
- Phase irregularities caused by the ionosphere --- "seeing", scintillation and position-offsets. Using a nearby calibrator with known/modelled visibility helps.
 Source not lying inside a iso-planatic patch introduces complexities.

Image Sensitivity

Image Sensitivity

Other factors that affect image-sensitivity:

- Errors in determining antenna calibration parameters,
- Choice of weighting --- natural weighting and no tapering has highest sensitivity, -> robust -> uniform,
- Confusion limit due to the sources within the synthesized beams,
- Confusion from the uncleaned sources lying in the sidelobes of the primary beam.

uGMRT Sensitivity Parameters

Table 1: uGMRT System Parameters

Band	Frequency range	Gain	T_{sys}	RMS noise [†] Primary Beam ^{\$}		Synth. beam ^{\$}
	MHz	(K/Jy)	K	$\mu Jy/Bm$	/	//
Band-2	(125 - 250)	0.33	760 - 240	500	120	17.3
Band-3	(250 - 500)	0.38	165 - 100	15	75	8.3
Band-4	(550 - 850)	0.35	≈ 100	6	38	4.3
Band-5	(1000 - 1460)	0.22-0.28	≈ 75	2.5	23	2.3

Table from GMRT status document

uGMRT Sensitivity

uGMRT Sensitivity/Exposure-time Calculator

GMRT Exposure Time Calculator (Continuum/Spectral Line)

Help In case of queries, please write to gmrtcalc[at]ncra.tifr.res.in.

Users are advised to run the ETC on the Firefox or Chrome browsers. Problems have been noticed in some versions of Safari.

1	Observation Type	?	Continuum V					
2	Observing Band		Band-2 (125-250 MHz) 🗸					
3	Representative Frequency	?	200 MHz v					
4	Number of antennas	?	26 🗸					
5	Bandwidth	?	200 V MHz V					
6	Usable Bandwidth	?	50 MHz V					
7	Number of Polarizations		2 ~					
8	Image weighting	?	Natural V					
9	Source co-ordinates(J2000)	?	RA 00h 00m 00.00s Dec 00d 00' 00.00"					
10	Sky temperature (T_sky, K)	?	0 auto calculate 🗸					
11 Calculation Type		?	On-Source Time V					
12 PMS noise								
13	13 On-source Time		00h 00m 00s					
14	Fudge Factor		1					
15	15 On-source Time including Fudge Factor		00h 00m 00s					
16	Overheads		00h 00m 00s auto calculate 🗸					
17	7 Extra Bandpass/Polarization Time		00h 00m 00s					
18	18 Total Time (15+16+17)		00h 00m 00s					
19	Confusion Limit (σ_c^*)	?	uJy/Bm V					
Calculate Reset Save as a PDF								

GMRT Exposure Time Calculator (Pulsars/Transients)

Help In case of queries, please write to gmrtcalc[at]ncra.tifr.res.in.

Users are advised to run the ETC on the Firefox or Chrome browsers. Problems have been noticed on some versions of Safari.

1	Observation Type		Pulsars/Transients V				
2	Observing Mode		Folded Profile 🗸				
3	Observing Band		Band-2 (125-250 MHz) 🗸				
4	Representative Frequency (v)		200 MHz ~				
5	Beam mode		IA v				
6	Number of antennas		26 🗸				
7	Bandwidth		200 V MHz V				
8	Usable bandwidth	?	50	MHz V			
9	Channel resolution	?	0.1	MHz v			
10	Number of polarizations	?	2 ~				
11	Source co-ordinates(J2000)	?	RA 00h 00m 00.00s I	Dec 00d 00' 00.00"			
12	Period		1000	ms v			
13	Pulse Width		100	ms v			
14	Dispersion measure		1	pc cm^-3 v			
15	5 Sky temperature (T_sky, K)		0	auto calculate 🗸			
16	6 Calculation Type		On-Source Time 🗸				
4							
17	7 RMS noise		100	hìn 🔨			
18	.8 On-source Time		00h 00m 00s				
10							
19	rudge ractor	2	1				
20	On-source Time including Fudge Factor	?	00h 00m 00s				
21	Overheads	?	00h 00m 00s	auto calculate 🗸			
22	Total Time (20+21)	?	00h 00m 00s				
Calculate Reset Save as a PDF							

http://www.ncra.tifr.res.in:8081/~secr-ops/etc/etc.html