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Radio telescopes

Reflector + single feed/antenna

Can measure wave amplitude and
phase (unlike optical devices)

Combine multiple antenna
measurements together
(interferometry)
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Measurement of the electric field

Feed/Antenna — couples electric field in space to
voltage in wire (or vice versa)

— Can also be just a long piece of wire (FM
antenna, AM antenna)

E(t) =2 E(t)

But: 1) Multiple independent radiators in each
source, 2) The sources are independent
— phases of E(t) are random




Measurement of the electric field

Each source adds power = V?/R to the feed via the E-field.
For single dish observations, we only measure noise power density (i.e. /Hz)
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Brightness temperature

Specific intensity/Brightness — power per
unit time, per unit area, per unit freq, per unit
solid angle

Total flux density from an astronomical
source — integrate over the solid angle

Given in units of Jansky (1072® erg/cm?/s/Hz)

Brightness doesn’t change with distance,
Flux density does




Brightness temperature

Blackbody radiation law

2hv3 1
2 /KT _ |

B,(T) =

For radio, we're in the Rayleigh tail in most
cases (except for T < 100K)

2 2
Buy(v,T) = kT

— Temperature proxy for brightness (flux density
per unit solid angle)




Johnson-Nyquist noise

Random thermal motions of electrons cause
noise

V will go +/- around zero (same for current i)
— V?/R represents the power

Power per unit bandwidth = kT

Constant power per unit BW till high frequencies
(quantum effects) — effectively white noise

Temperature T

W




Calibrated noise diode

Switchable source of noise

Calibrated in the factory

https://www.keysight.com/sg/en/product/N4001A/
sns-series-noise-source-10-mhz-18-ghz-enr-15-d

Known, small dependence on b.htmi
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Brightness temperature

But beam pattern makes a difference
If beam size dQ < angular size Q
Power received = dQ*Brightness
Effective brightness = Power/d€Q2

== Brightness

Brightness temperature is correctly
measured

Temperature =T

B

Beam size dQ2



Brightness temperature

If beam size dQ > angular size Q T, >
Power received = Q*Brightness

Effective brightness = Power/d€2

== Brightness*€2/dQ

Brightness temperature is diluted by a
factor of Q/dQ (solid angle ratio)

Beam size dQ

>



Brightness temperature

TB == actual temperature only for

blackbodies

If the radiation is non-thermal, TB can be far
higher than physical temperature

Brightness temperatures can be very high —
10*° K for FRBs

=5D* Uy kpc?)

Pseudo luminosity

5 10* 1072 10° 102
vW (GHz s)

Cordes & Chatterjee
(2020)



Radiation Pattern O= <<< %@

Each antenna has a radiation gain pattern

G0, ¢) ®§ >>>> %@

Power ratio transmitted per unit solid angle in
direction (0, ¢)
(Reciprocity theorem — also power recd)

Essentials of Radio Astronomy
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Radiation Pattern O= <<< %@

gain G5 = 10 log,((G) o= )>>> W

Gain/directivity is w.r.t. an isotropic lossless Antenna A Antenna B
antenna (doesn’t eXiSt) Essentials of Radio Astronomy

Beam solid angle Q, = 4x/G__
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(Effectively the solid angle into which the light is mainlob{
transmitted or recd from) 5
HPBW
Low freq radio __— sidelobe

astronomy


https://www.cv.nrao.edu/~sransom/web/Ch3.html
http://www.ncra.tifr.res.in/ncra/gmrt/gmrt-users/low-frequency-radio-astronomy/ch3.pdf
http://www.ncra.tifr.res.in/ncra/gmrt/gmrt-users/low-frequency-radio-astronomy/ch3.pdf

Radiation Pattern

Same idea as the PSF in optical astronomy
Much larger angular sizes (for single dishes)

UR— ND still works

Except A comparable or slightly smaller than D.

D = diameter of the dish (or size of the last
radiating element)

mainlobe

Low freq radio
astronomy
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Effective Area

Effective area Ae = Power received/source flux
density

A ,=P_IS
Aperture efficiency n = A_/A

geometric

A, is direction dependent
Relatedto G__asG__ =4z A___ /N

e, max

<A_> = N*/4x (integrated over the sphere)



Antenna Temperature

Assuming perfect coupling with the
antenna,

Power recd == power emitted (Johnson
noise)

Load resistance R should equilibrate at

Tg

Add directivity — R should equilibrate at
the average brightness temperature in
the beam

Oven

Huge blackbody at some temperature

Tg




Antenna Temperature

kT, =%*Ae* IT GO, ) B(6, @) d

B(0, ¢) is the angular brightness distribution created by an extended object of
brightness temperature T (or multiple different sources)

Antenna temperature — measures the contribution of the source to the antenna
power
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Signal chain
Simple non-heterodyne signal
chain

Measures power over a small
frequency range
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Radiometer equation

How do we measure power?

Square the voltage and average over some
bandwidth and time

How many independent measurements?

— Shannon-Nyquist sampling theorem

+3

V/ Vrms
o

P(V/V s )

Essentials of Radio Astronomy



https://www.cv.nrao.edu/~sransom/web/Ch3.html

Shannon-Nyquist Sampling Theorem

Any function having finite bandwidth Av and duration 1 can be represented by
2AvT independent samples spaced in time by (2Av)™

— Having more samples than this will not give more information about your
measurement. They will not be independent.

We measure voltage with 2Avt samples.
Error in power measurement = 2*error in voltage measurement

— If we average the power over a bandwidth Av and time 1, we get Avr
independent measurements — error in average power measurement reduces by
sqrt(Avr)



Essentials of Radio Astronomy

Radiometer equation

Band-—

How do we measure power? ass 4®, Inte- @
p tor
filter gra

Square the voltage and average over some
bandwidth and time

Bandpass filter — v _.—Av/2 to v _+Av/2, kT

Integrator — output voltage V _ proportional
to V. over timescale 1 >> 1/Av | v

(Vge) ™!

For a detailed derivations see ERA


https://www.cv.nrao.edu/~sransom/web/Ch3.html
https://www.cv.nrao.edu/~sransom/web/A2.html#S6

Essentials of Radio Astronomy

Radiometer equation ,

kT, |

How do we measure power?

Square the voltage and average over some 1
bandwidth and time

Bandpass filter — vRF—Av/2 to vRF+Av/2, I

+5 -

v, /<V >

Integrator — output voltage V _ proportional
to V2 over timescale 1 >> 1/Av
| LM

If total noise power is Ts, the error in
measurement is Ts/sqrt(Avr)

P, (V,/<V. >)



https://www.cv.nrao.edu/~sransom/web/Ch3.html

Noise sources

Ts=T, gt T, tAT +T_ +T

sky source atm Ground

Amplifier” """

Ty = 273K

T,,, depends on frequency and position on the sky —

different components

T ., — frequency dependent and opacity dependent

Tground — spill over from the ground at 300K

T, oiifier— NOIS€ added by the first amplifier (mainly)

and rest of the electronics
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https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.3486Z/abstract

Heterodyne systems N

RF IF To fixed-—

?mpli— e ?mpli— —> {)reqll.lendcy
Developing electronics for each frequency is
hard
Mix (multiply) incoming RF with a local oscillator @

v+Nov

sin(wget)"sin(w t) = 72cos((wp—w ) —
72Co8((wgetw o))

Discard high frequency part (o -+, )

IF v+36v

Design everything else for .= w;— o4

Tune the RF observed by changing LO v+20v

v+ov

368 &




Heterodyne systems

Spectroscopy is done in 2 ways

1) Hardware filterbanks — separate electronic
filters for each IF

2) Digital filterbanks — FFT the timeseries, get
power in separate channels (more in next
lecture)
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Murchison Radio-astronomy Observatory Ste

Focal plane array

Most telescopes have a single
feed at the focus — single pixel
camera FoV == primary beam
size

Phased array feed/Focal plane
array — Multiple feeds

Complex response to electric Allows for large survey speeds

fields from different directions
ASKAP, Westerbork
Needs beamforming



