# Single dish radio astronomy

Shriharsh Tendulkar Radio Astronomy School 2023

# Radio telescopes

Reflector + single feed/antenna

Can measure wave amplitude and phase (unlike optical devices)

Combine multiple antenna measurements together (interferometry)

#### References:

- 1) <u>NCRA Low Frequency Radio</u> <u>Astronomy Handbook</u>
- 2) <u>NRAO Essentials of Radio</u> <u>Astronomy</u>
- 3) <u>Tools of Radio Astronomy</u>



## Measurement of the electric field

Feed/Antenna  $\rightarrow$  couples electric field in space to voltage in wire (or vice versa)  $\rightarrow$  Can also be just a long piece of wire (FM

antenna, AM antenna)

 $E(t) = \sum E_i(t)$ 

But: 1) Multiple independent radiators in each source, 2) The sources are independent  $\rightarrow$  phases of E<sub>i</sub>(t) are random



#### Measurement of the electric field

Each source adds power =  $V^2/R$  to the feed via the E-field.

For single dish observations, we only measure noise power density (i.e. /Hz)

 $P_{total} = P_{source} + P_{sky} + P_{Amplifier} + P_{ground} \dots$ 

On-source and off-source measurements

 $P_{off-source} = P_{sky} + P_{Amplifier} + P_{ground} \dots$  $P_{source} = P_{total} - P_{off-source}$ 

Specific intensity/Brightness  $\rightarrow$  power per unit time, per unit area, per unit freq, per unit solid angle

Total flux density from an astronomical source  $\rightarrow$  integrate over the solid angle

Given in units of Jansky (10<sup>-23</sup> erg/cm<sup>2</sup>/s/Hz)

Brightness doesn't change with distance. Flux density does



Blackbody radiation law

$$B_{\nu}(T) = \frac{2h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$$

For radio, we're in the Rayleigh tail in most cases (except for T < 100K)

$$B_{\rm RJ}(\nu,T) = \frac{2\nu^2}{c^2}kT$$

 $\rightarrow$  Temperature proxy for brightness (flux density per unit solid angle)



### Johnson-Nyquist noise

Random thermal motions of electrons cause noise

V will go +/- around zero (same for current i)

 $\rightarrow V^2/R$  represents the power

Power per unit bandwidth =  $k_B T$ 

Constant power per unit BW till high frequencies (quantum effects)  $\rightarrow$  effectively white noise



#### Calibrated noise diode

Switchable source of noise

Calibrated in the factory

Known, small dependence on temperature, voltage

Allows the system noise/gain to be calculated



https://www.keysight.com/sg/en/product/N4001A/ sns-series-noise-source-10-mhz-18-ghz-enr-15-d b.html



But beam pattern makes a difference

If beam size  $d\Omega$  < angular size  $\Omega$ 

Power received =  $d\Omega^*$ Brightness

Effective brightness = Power/d $\Omega$ 

== Brightness

Brightness temperature is correctly measured



Ω

If beam size d $\Omega$  > angular size  $\Omega$ 

Power received =  $\Omega^*$ Brightness

Effective brightness = Power/d $\Omega$ 

== Brightness\* $\Omega/d\Omega$ 

Brightness temperature is diluted by a factor of  $\Omega/d\Omega$  (solid angle ratio)



Ω

 $T_{\rm B}$  == actual temperature only for blackbodies

If the radiation is non-thermal,  $T_{\rm B}$  can be far higher than physical temperature

Brightness temperatures can be very high – 10<sup>40</sup> K for FRBs



Cordes & Chatterjee (2020)

### **Radiation Pattern**

Each antenna has a radiation gain pattern

 $G(\theta, \varphi)$ 

Power ratio transmitted per unit solid angle in direction ( $\theta$ ,  $\varphi$ ) (Reciprocity theorem  $\rightarrow$  also power recd)

$$P_{\rm n}(\vartheta,\varphi) = \frac{1}{P_{\rm max}} P(\vartheta,\varphi)$$

$$G(\vartheta,\varphi) = \frac{4\pi P(\vartheta,\varphi)}{\iint\limits_{4\pi} P(\vartheta,\varphi) \,\mathrm{d}\Omega}$$

Normalized to  $4\pi$  over the sphere





#### **Radiation Pattern**

gain  $G_{dB} = 10 \log_{10}(G)$ 

Gain/directivity is w.r.t. an isotropic lossless antenna (doesn't exist)

Beam solid angle  $\Omega_A = 4\pi/G_{max}$ 

(Effectively the solid angle into which the light is transmitted or recd from)



#### **Radiation Pattern**

Same idea as the PSF in optical astronomy

Much larger angular sizes (for single dishes)

 $\theta_{\rm HPBW}$  =  $\lambda$ /D still works

Except  $\lambda$  comparable or slightly smaller than D.

D = diameter of the dish (or size of the last radiating element)



#### **Effective Area**

Effective area A<sub>e</sub> = Power received/source flux density

 $A_e = P_{rx}/S$ 

Aperture efficiency  $\eta = A_e / A_{geometric}$ 

 $A_e$  is direction dependent Related to  $G_{max}$  as  $G_{max} = 4\pi A_{e, max}/\lambda^2$ 

 $<A_{e}> = \lambda^{2}/4\pi$  (integrated over the sphere)



# Antenna Temperature

Assuming perfect coupling with the antenna,

```
Power recd == power emitted (Johnson noise)
```

Load resistance R should equilibrate at  $\mathrm{T}_{_{\mathrm{B}}}$ 

Add directivity  $\rightarrow$  R should equilibrate at the average brightness temperature in the beam



#### Antenna Temperature

 $k_B T_A = \frac{1}{2} * Ae * ∬ G(θ, φ) B(θ, φ) dΩ$ 

B( $\theta$ ,  $\varphi$ ) is the angular brightness distribution created by an extended object of brightness temperature T<sub>B</sub> (or multiple different sources)

Antenna temperature  $\rightarrow$  measures the contribution of the source to the antenna power

# Signal chain

Simple non-heterodyne signal chain



Measures power over a small frequency range



#### **Radiometer equation**

How do we measure power?

Square the voltage and average over some bandwidth and time

How many independent measurements?

 $\rightarrow$  Shannon-Nyquist sampling theorem



# Shannon-Nyquist Sampling Theorem

Any function having finite bandwidth  $\Delta v$  and duration  $\tau$  can be represented by  $2\Delta v\tau$  independent samples spaced in time by  $(2\Delta v)^{-1}$ 

 $\rightarrow$  Having more samples than this will not give more information about your measurement. They will not be independent.

We measure voltage with  $2\Delta v\tau$  samples.

Error in power measurement = 2\*error in voltage measurement

 $\rightarrow$  If we average the power over a bandwidth  $\Delta v$  and time  $\tau$ , we get  $\Delta v\tau$  independent measurements  $\rightarrow$  error in average power measurement reduces by sqrt( $\Delta v\tau$ )

### **Radiometer equation**

How do we measure power?

Square the voltage and average over some bandwidth and time

Bandpass filter  $\rightarrow$  v\_{RF}^{}-\Delta v/2 to v\_{RF}^{}+\Delta v/2,

Integrator  $\rightarrow$  output voltage V<sub>o</sub> proportional to V<sup>2</sup><sub>i</sub> over timescale  $\tau >> 1/\Delta v$ 



#### **Radiometer equation**

How do we measure power?

Square the voltage and average over some bandwidth and time

Bandpass filter  $\rightarrow v_{RF} - \Delta v/2$  to  $v_{RF} + \Delta v/2$ ,

Integrator  $\rightarrow$  output voltage V<sub>o</sub> proportional to V<sub>i</sub><sup>2</sup> over timescale  $\tau >> 1/\Delta v$ 

If total noise power is Ts, the error in measurement is Ts/sqrt( $\Delta v\tau$ )



#### Noise sources

$$T_{S} = T_{CMB} + T_{sky} + \Delta T_{source} + T_{atm} + T_{Ground} + T_{Amplifier}$$

 $T_{CMB}$  = 2.73 K

 ${\rm T}_{\rm sky}$  depends on frequency and position on the sky – different components

 $\mathrm{T}_{\mathrm{atm}}$  – frequency dependent and opacity dependent

 $T_{ground}$  – spill over from the ground at 300K

 $\rm T_{\rm amplifier}-$  noise added by the first amplifier (mainly) and rest of the electronics



#### Noise sources

$$T_{S} = T_{CMB} + T_{sky} + \Delta T_{source} + T_{atm} + T_{Ground} + T_{Amplifier}$$

 $T_{CMB}$  = 2.73 K

 ${\rm T}_{\rm sky}$  depends on frequency and position on the sky – different components

 $\mathrm{T}_{\mathrm{atm}}$  – frequency dependent and opacity dependent

 $T_{ground}$  – spill over from the ground at 300K

 $\rm T_{\rm amplifier}-$  noise added by the first amplifier (mainly) and rest of the electronics



### Heterodyne systems

Developing electronics for each frequency is hard

Mix (multiply) incoming RF with a local oscillator

$$sin(\omega_{\rm RF}t)^*sin(\omega_{\rm LO}t) = \frac{1}{2}cos((\omega_{\rm RF}-\omega_{\rm LO})t) - \frac{1}{2}cos((\omega_{\rm RF}+\omega_{\rm LO})t)$$

Discard high frequency part ( $\omega_{\rm RF}$ + $\omega_{\rm LO}$ )

Design everything else for  $\omega_{\rm IF} = \omega_{\rm RF} - \omega_{\rm IO}$ 

Tune the RF observed by changing LO



### Heterodyne systems

Spectroscopy is done in 2 ways

- 1) Hardware filterbanks separate electronic filters for each IF
- 2) Digital filterbanks FFT the timeseries, get power in separate channels (more in next lecture)



# Focal plane array

Most telescopes have a single feed at the focus → single pixel camera FoV == primary beam size

Phased array feed/Focal plane array  $\rightarrow$  Multiple feeds

Complex response to electric fields from different directions

Needs beamforming



Allows for large survey speeds ASKAP, Westerbork